論文の概要: Adaptive quantum codes: constructions, applications and fault tolerance
- arxiv url: http://arxiv.org/abs/2203.03247v2
- Date: Sat, 26 Mar 2022 02:53:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-22 22:13:23.820108
- Title: Adaptive quantum codes: constructions, applications and fault tolerance
- Title(参考訳): 適応量子符号:構成、応用、耐障害性
- Authors: Akshaya Jayashankar
- Abstract要約: 完全量子符号は、QEC以外のシナリオに対する顕著な改善を観測するために、少なくとも5つの物理量子ビットを必要とする。
本研究では,高い忠実度を有する1次元スピンチェーン上で,あるサイトから他方への量子情報の伝達を可能にする適応QECプロトコルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A major obstacle towards realizing a practical quantum computer is the noise
that arises due to system-environment interactions. While it is very well known
that quantum error correction (QEC) provides a way to protect against errors
that arise due to the noise affecting the system, a perfect quantum code
requires atleast five physical qubits to observe a noticeable improvement over
the no-QEC scenario. However, in cases where the noise structure in the system
is already known, it might be more useful to consider quantum codes that are
adapted to specific noise models. It is already known in the literature that
such codes are resource efficient and perform on par with the standard codes.
In this spirit, we address the following questions concerning such adaptive
quantum codes in this thesis. (a) Construction: Given a noise model, we propose
a simple and fast numerical optimization algorithm to search for good quantum
codes. (b) Application: As a simple application of noise-adapted codes, we
propose an adaptive QEC protocol that allows transmission of quantum
information from one site to the other over a 1-d spin chain with high
fidelity. (c) Fault-tolerance: Finally, we address the question of whether such
noise-adapted QEC protocols can be made fault-tolerant starting with a [[4,1]]
code and obtain a rigorous lower bound on threshold.
- Abstract(参考訳): 実用的な量子コンピュータを実現するための大きな障害は、システム環境相互作用に起因するノイズである。
量子誤り訂正(QEC)は、システムに影響を及ぼすノイズによって発生するエラーを防ぐ手段としてよく知られているが、完全量子符号では、非QECシナリオに対する顕著な改善を観測するために、最大5つの物理量子ビットを必要とする。
しかし、システム内のノイズ構造が既に知られている場合、特定のノイズモデルに適応した量子符号を考える方がより有用かもしれない。
文献では、そのようなコードはリソース効率が高く、標準コードと同等の性能を持つことがすでに知られている。
この精神では、このような適応量子符号に関する以下の疑問に対処する。
(a) 構成: ノイズモデルが与えられた場合, 優れた量子コードを探すための単純かつ高速な数値最適化アルゴリズムを提案する。
b) 応用: ノイズ適応符号の簡単な応用として, 高い忠実度を有する1次元スピンチェーン上で, あるサイトから他方への量子情報の伝送を可能にする適応QECプロトコルを提案する。
c) フォールトトレランス: 最後に、[[[4,1]]コードからこのようなノイズ対応qecプロトコルがフォールトトレラントになるかどうかという問題に対処し、しきい値の厳格な下限を得る。
関連論文リスト
- Unconditionally decoherence-free quantum error mitigation by density matrix vectorization [4.2630430280861376]
密度行列のベクトル化に基づく量子誤差緩和の新しいパラダイムを提案する。
提案手法は,情報符号化の方法を直接変更し,ノイズのない純状態に雑音の多い量子状態の密度行列をマッピングする。
我々のプロトコルは、ノイズモデルに関する知識、ノイズ強度を調整する能力、複雑な制御ユニタリのためのアンシラキュービットを必要としない。
論文 参考訳(メタデータ) (2024-05-13T09:55:05Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Entanglement recovery in noisy binary quantum information protocols via
three-qubit quantum error correction codes [0.0]
本稿では,単純な3量子QEC符号が2量子系における絡み合いと非局所性を復元する効果について検討する。
本研究では, 絡み合いの急激な死を回避し, 対応プロトコルの性能を向上し, ノイズ振幅を大きくすることを示す。
論文 参考訳(メタデータ) (2022-11-21T09:37:31Z) - Quantum Error Correction via Noise Guessing Decoding [0.0]
量子誤り訂正符号(QECC)は、量子通信と量子計算の両方において中心的な役割を果たす。
本稿では,有限ブロック長レジームの最大性能を達成できるQECCの構築と復号化が可能であることを示す。
論文 参考訳(メタデータ) (2022-08-04T16:18:20Z) - NISQ: Error Correction, Mitigation, and Noise Simulation [0.39146761527401414]
誤り訂正符号は、ノイズの多い通信チャネルの誤りを修正するために発明された。
量子エラー訂正(QEC)は、情報伝達、量子シミュレーション/計算、フォールトトレランスなど幅広い用途を持つ。
本研究は,QEM(Quantum Error Mitigation)の課題について,いくつかの観点から検討する。
論文 参考訳(メタデータ) (2021-11-03T16:55:47Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
実効多部絡み(GME)認証のための条件付き目撃手法を導入する。
線形な二分割数における絡み合いの検出は, 多数の測定値によって線形にスケールし, GMEの認証に十分であることを示す。
本手法は, 距離3の位相的カラーコードとフラグベースの耐故障バージョンにおける安定化作用素の雑音可読化に適用する。
論文 参考訳(メタデータ) (2020-10-06T18:00:07Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z) - Efficiently computing logical noise in quantum error correcting codes [0.0]
実効論理ノイズに対する再正規化として,読み出し量子ビット上の測定誤差が現れることを示す。
実効的論理ノイズの計算複雑性を,数桁のオーダーで低減する一般手法を導出する。
論文 参考訳(メタデータ) (2020-03-23T19:40:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。