Data-Driven Quantum Approximate Optimization Algorithm for
Cyber-Physical Power Systems
- URL: http://arxiv.org/abs/2204.00738v1
- Date: Sat, 2 Apr 2022 01:55:28 GMT
- Title: Data-Driven Quantum Approximate Optimization Algorithm for
Cyber-Physical Power Systems
- Authors: Hang Jing, Ye Wang, Yan Li
- Abstract summary: Quantum technology provides a ground-breaking methodology to tackle challenging computational issues in power systems.
We present a data-driven QAOA, which transfers quasi-optimal parameters between weighted graphs based on the normalized graph density.
This work advances QAOA and pilots the practical application of quantum technique to power systems in noisy intermediate-scale quantum devices.
- Score: 5.767702870937779
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum technology provides a ground-breaking methodology to tackle
challenging computational issues in power systems, especially for Distributed
Energy Resources (DERs) dominant cyber-physical systems that have been widely
developed to promote energy sustainability. The systems' maximum power or data
sections are essential for monitoring, operation, and control, while high
computational effort is required. Quantum Approximate Optimization Algorithm
(QAOA) provides a promising means to search for these sections by leveraging
quantum resources. However, its performance highly relies on the critical
parameters, especially for weighted graphs. We present a data-driven QAOA,
which transfers quasi-optimal parameters between weighted graphs based on the
normalized graph density, and verify the strategy with 39,774 instances.
Without parameter optimization, our data-driven QAOA is comparable with the
Goemans-Williamson algorithm. This work advances QAOA and pilots the practical
application of quantum technique to power systems in noisy intermediate-scale
quantum devices, heralding its next-generation computation in the quantum era.
Related papers
- Towards Efficient Quantum Computation of Molecular Ground State Energies using Bayesian Optimization with Priors over Surface Topology [0.0]
Variational Quantum Eigensolvers (VQEs) represent a promising approach to computing molecular ground states and energies on modern quantum computers.
We propose modifications to the standard Bayesian optimization algorithm to leverage few-shot circuit observations to solve VQEs with fewer quantum resources.
arXiv Detail & Related papers (2024-07-10T18:01:50Z) - Variational Quantum Algorithms for Combinatorial Optimization [0.571097144710995]
Variational Algorithms (VQA) have emerged as one of the strongest candidates towards reaching practical applicability of NISQ systems.
This paper explores the current state and recent developments of VQAs, emphasizing their applicability to Approximate optimization.
We implement QAOA circuits with varying depths to solve the MaxCut problem on graphs with 10 and 20 nodes.
arXiv Detail & Related papers (2024-07-08T22:02:39Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
We focus on measurement-based quantum computing protocols for approximate optimization.
We derive measurement patterns for applying QAOA to the broad and important class of QUBO problems.
We discuss the resource requirements and tradeoffs of our approach to that of more traditional quantum circuits.
arXiv Detail & Related papers (2024-03-18T06:59:23Z) - Projective Quantum Eigensolver via Adiabatically Decoupled Subsystem Evolution: a Resource Efficient Approach to Molecular Energetics in Noisy Quantum Computers [0.0]
We develop a projective formalism that aims to compute ground-state energies of molecular systems accurately using Noisy Intermediate Scale Quantum (NISQ) hardware.
We demonstrate the method's superior performance under noise while concurrently ensuring requisite accuracy in future fault-tolerant systems.
arXiv Detail & Related papers (2024-03-13T13:27:40Z) - Generative AI-enabled Quantum Computing Networks and Intelligent
Resource Allocation [80.78352800340032]
Quantum computing networks execute large-scale generative AI computation tasks and advanced quantum algorithms.
efficient resource allocation in quantum computing networks is a critical challenge due to qubit variability and network complexity.
We introduce state-of-the-art reinforcement learning (RL) algorithms, from generative learning to quantum machine learning for optimal quantum resource allocation.
arXiv Detail & Related papers (2024-01-13T17:16:38Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Hyperparameter optimization, quantum-assisted model performance
prediction, and benchmarking of AI-based High Energy Physics workloads using
HPC [0.0]
This work studies the potential of using model performance prediction to aid the HPO process carried out on High Performance Computing systems.
A quantum annealer is used to train the performance predictor and a method is proposed to overcome some of the problems derived from the current limitations in quantum systems.
Results are presented from the development of a containerized benchmark based on an AI-model for collision event reconstruction.
arXiv Detail & Related papers (2023-03-27T09:55:33Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.