論文の概要: Bi-fidelity Modeling of Uncertain and Partially Unknown Systems using
DeepONets
- arxiv url: http://arxiv.org/abs/2204.00997v1
- Date: Sun, 3 Apr 2022 05:30:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-05 13:31:52.660888
- Title: Bi-fidelity Modeling of Uncertain and Partially Unknown Systems using
DeepONets
- Title(参考訳): DeepONets を用いた不確かさと部分未知のシステムの双方向モデリング
- Authors: Subhayan De, Malik Hassanaly, Matthew Reynolds, Ryan N. King, and
Alireza Doostan
- Abstract要約: 本稿では,複雑な物理系に対する双方向モデリング手法を提案する。
我々は、小さなトレーニングデータセットが存在する場合、真のシステムの応答と低忠実度応答の相違をモデル化する。
パラメトリック不確実性を持ち、部分的には未知なモデルシステムにアプローチを適用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in modeling large-scale complex physical systems have shifted
research focuses towards data-driven techniques. However, generating datasets
by simulating complex systems can require significant computational resources.
Similarly, acquiring experimental datasets can prove difficult as well. For
these systems, often computationally inexpensive, but in general inaccurate,
models, known as the low-fidelity models, are available. In this paper, we
propose a bi-fidelity modeling approach for complex physical systems, where we
model the discrepancy between the true system's response and low-fidelity
response in the presence of a small training dataset from the true system's
response using a deep operator network (DeepONet), a neural network
architecture suitable for approximating nonlinear operators. We apply the
approach to model systems that have parametric uncertainty and are partially
unknown. Three numerical examples are used to show the efficacy of the proposed
approach to model uncertain and partially unknown complex physical systems.
- Abstract(参考訳): 大規模複雑な物理システムのモデリングにおける最近の進歩は、研究の焦点をデータ駆動技術に移している。
しかし、複雑なシステムをシミュレートしてデータセットを生成するには、かなりの計算資源が必要になる。
同様に、実験データセットの取得も困難である。
これらのシステムでは、しばしば計算的に安価であるが、一般に不正確なモデル(低忠実度モデル)が利用可能である。
本稿では,非線形演算子近似に適したニューラルネットワークアーキテクチャであるdeep operator network (deeponet) を用いて,実システムの応答と低忠実度応答との差を,実システムの応答と実システムの応答との小さなトレーニングデータセットの存在下でモデル化する,複雑な物理システムに対する双忠実性モデリング手法を提案する。
パラメトリック不確実性を持ち、部分的には未知なモデルシステムにアプローチを適用する。
3つの数値例は、不確かで部分的に未知の複雑な物理系をモデル化する提案手法の有効性を示すために用いられる。
関連論文リスト
- Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
本稿では,部分的な観測を伴う複雑な乱流系の反復学習アルゴリズムを提案する。
モデル構造を識別し、観測されていない変数を復元し、パラメータを推定する。
数値実験により、新しいアルゴリズムはモデル構造を同定し、多くの複雑な非線形系に対して適切なパラメータ化を提供することに成功した。
論文 参考訳(メタデータ) (2022-08-19T00:35:03Z) - Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems [0.0]
制御対象の非自律系をモデル化するための物理誘導型ハイブリッド手法を提案する。
これはリカレントニューラルネットワークによって拡張され、洗練された多目的戦略を使用してトレーニングされる。
実データを用いた実験により,物理モデルと比較して精度が大幅に向上した。
論文 参考訳(メタデータ) (2022-04-27T14:33:02Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。