論文の概要: T- Hop: Tensor representation of paths in graph convolutional networks
- arxiv url: http://arxiv.org/abs/2204.04983v1
- Date: Mon, 11 Apr 2022 09:53:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-13 01:51:07.772479
- Title: T- Hop: Tensor representation of paths in graph convolutional networks
- Title(参考訳): T-ホップ:グラフ畳み込みネットワークにおける経路のテンソル表現
- Authors: Abdulrahman Ibraheem
- Abstract要約: 導入した経路表現スキームとパワード・アジャカシー行列の関連性を示す。
3次元テンソルで作業する際の重い計算要求を軽減するため,深度軸に次元性還元を適用することを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe a method for encoding path information in graphs into a 3-d
tensor. We show a connection between the introduced path representation scheme
and powered adjacency matrices. To alleviate the heavy computational demands of
working with the 3-d tensor, we propose to apply dimensionality reduction on
the depth axis of the tensor. We then describe our the reduced 3-d matrix can
be parlayed into a plausible graph convolutional layer, by infusing it into an
established graph convolutional network framework such as MixHop.
- Abstract(参考訳): グラフ内の経路情報を3次元テンソルに符号化する手法について述べる。
導入された経路表現スキームとパワー付き隣接行列との関係を示す。
3次元テンソルで作業する際の重い計算要求を軽減するために,テンソルの深さ軸に次元性還元を適用することを提案する。
次に、縮小された3次元行列を、mixhopのような確立されたグラフ畳み込みネットワークフレームワークに導入することにより、実行可能なグラフ畳み込み層にパーレイすることができる。
関連論文リスト
- Haar-Laplacian for directed graphs [0.7366405857677226]
本稿では,スペクトル畳み込みネットワークの構築を目的とした新しいラプラシア行列を提案する。
重み予測や有向グラフの denoising などの応用において,本手法がよりよい結果をもたらすことを示す。
論文 参考訳(メタデータ) (2024-11-23T11:42:16Z) - Detecting Homeomorphic 3-manifolds via Graph Neural Networks [0.0]
グラフニューラルネットワークを用いたグラフ多様体のクラスに対する同相性問題について検討する。
2つの畳み込みレイヤの異なる組み合わせをテストすることで、教師付き学習環境でさまざまなネットワークアーキテクチャをトレーニングし、ベンチマークします。
論文 参考訳(メタデータ) (2024-09-01T12:58:09Z) - Graphon Pooling for Reducing Dimensionality of Signals and Convolutional
Operators on Graphs [131.53471236405628]
グラフ空間における[0, 1]2の分割上のグラフとグラフ信号の誘導的グラフ表現を利用する3つの方法を提案する。
これらの低次元表現がグラフとグラフ信号の収束列を構成することを証明している。
我々は,層間次元減少比が大きい場合,グラノンプーリングは文献で提案した他の手法よりも有意に優れていることを観察した。
論文 参考訳(メタデータ) (2022-12-15T22:11:34Z) - Shortest Paths in Graphs with Matrix-Valued Edges: Concepts, Algorithm
and Application to 3D Multi-Shape Analysis [69.08838724594584]
グラフ内の最短経路を見つけることは、コンピュータビジョンやグラフィックスにおける多くの問題に関係している。
本稿では,行列値のエッジを持つグラフにおいて,最短経路のグラフ理論を新たに導入する。
論文 参考訳(メタデータ) (2021-12-08T08:23:37Z) - Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D
Shape Synthesis [90.26556260531707]
DMTetは粗いボクセルのような単純なユーザーガイドを用いて高解像度の3次元形状を合成できる条件付き生成モデルである。
メッシュなどの明示的な表現を直接生成する深部3次元生成モデルとは異なり、我々のモデルは任意の位相で形状を合成することができる。
論文 参考訳(メタデータ) (2021-11-08T05:29:35Z) - Joint 3D Human Shape Recovery from A Single Imag with Bilayer-Graph [35.375489948345404]
画像から3次元の人物形状とポーズを推定するための2次元グラフ手法を提案する。
密なグラフから得られた粗いグラフを用いて、人間の3次元のポーズを推定し、密なグラフを使って3次元の形状を推定する。
エンド・ツー・エンドのモデルをトレーニングし、いくつかの評価データセットに対して最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-16T05:04:02Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
スペクトルグラフ畳み込みネットワーク(SGCN)はグラフ表現学習において注目を集めている。
本稿では,適応グラフウェーブレットを用いたグラフ畳み込みを実装した新しいスペクトルグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T17:57:53Z) - 3D Shape Registration Using Spectral Graph Embedding and Probabilistic
Matching [24.41451985857662]
本稿では,3次元形状登録の問題に対処し,スペクトルグラフ理論と確率的マッチングに基づく新しい手法を提案する。
この章の主な貢献は、スペクトルグラフマッチング法をラプラシアン埋め込みと組み合わせることで、非常に大きなグラフに拡張することである。
論文 参考訳(メタデータ) (2021-06-21T15:02:31Z) - Self-Supervised Graph Representation Learning via Topology
Transformations [61.870882736758624]
本稿では,グラフデータのノード表現のための自己教師型学習の一般的なパラダイムであるトポロジー変換同変表現学習について述べる。
実験では,提案手法を下流ノードおよびグラフ分類タスクに適用し,提案手法が最先端の教師なし手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-05-25T06:11:03Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
本稿では,グラフ・ニューラル・ネットワークの文献からトライアングル・メッシュへ引き起こされた原始双対のフレームワークを提案する。
提案手法は,3次元メッシュのエッジと顔の両方を入力として特徴付け,動的に集約する。
メッシュ単純化の文献から得られたツールを用いて、我々のアプローチに関する理論的知見を提供する。
論文 参考訳(メタデータ) (2020-10-23T14:49:02Z) - Distance-Geometric Graph Convolutional Network (DG-GCN) for
Three-Dimensional (3D) Graphs [0.8722210937404288]
距離幾何学グラフ表現に基づくメッセージパッシンググラフ畳み込みネットワークを提案する。
距離からフィルタ重みの学習を可能にし、3次元グラフの幾何学をグラフ畳み込みに組み込む。
本研究は3次元グラフ,特に分子グラフ上でのエンドツーエンドディープラーニングにおけるDG-GCNの有用性と価値を示す。
論文 参考訳(メタデータ) (2020-07-06T15:20:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。