論文の概要: ADAPT-VQE is insensitive to rough parameter landscapes and barren
plateaus
- arxiv url: http://arxiv.org/abs/2204.07179v1
- Date: Thu, 14 Apr 2022 18:24:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-16 23:59:03.147844
- Title: ADAPT-VQE is insensitive to rough parameter landscapes and barren
plateaus
- Title(参考訳): ADAPT-VQEは粗いパラメータランドスケープや不毛の台地に敏感である
- Authors: Harper R. Grimsley, George S. Barron, Edwin Barnes, Sophia E.
Economou, Nicholas J. Mayhall
- Abstract要約: 変分量子固有解法(VQEs)は、分子エネルギーを計算するためのハイブリッド量子古典アルゴリズムの強力なクラスである。
これらの方法には、不毛の台地や多数の局所ミニマなど、様々な数値的な問題が存在する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum eigensolvers (VQEs) represent a powerful class of hybrid
quantum-classical algorithms for computing molecular energies. Various
numerical issues exist for these methods, however, including barren plateaus
and large numbers of local minima. In this work, we consider Adaptive,
Problem-Tailored (ADAPT)-VQE ans\"atze, and examine how they are impacted by
these local minima. We find that while ADAPT-VQE does not remove local minima,
the gradient-informed, one-operator-at-a-time circuit construction seems to
accomplish two things: First, it provides an initialization strategy that is
dramatically better than random initialization, and which is applicable in
situations where chemical intuition cannot help with initialization, i.e., when
Hartree-Fock is a poor approximation to the ground state. Second, even if an
ADAPT-VQE iteration converges to a local trap at one step, it can still
"burrow" toward the exact solution by adding more operators, which
preferentially deepens the occupied trap. This same mechanism helps highlight a
surprising feature of ADAPT-VQE: It should not suffer optimization problems due
to "barren plateaus". Even if barren plateaus appear in the parameter
landscape, our analysis and simulations reveal that ADAPT-VQE avoids such
regions by design.
- Abstract(参考訳): 変分量子固有解法(VQEs)は、分子エネルギーを計算するためのハイブリッド量子古典アルゴリズムの強力なクラスである。
しかし,これらの手法には不毛の台地や多数の局所ミニマなど,様々な数値的な問題がある。
In this work, we consider Adaptive, Problem-Tailored (ADAPT)-VQE ans\"atze, and examine how they are impacted by these local minima. We find that while ADAPT-VQE does not remove local minima, the gradient-informed, one-operator-at-a-time circuit construction seems to accomplish two things: First, it provides an initialization strategy that is dramatically better than random initialization, and which is applicable in situations where chemical intuition cannot help with initialization, i.e., when Hartree-Fock is a poor approximation to the ground state. Second, even if an ADAPT-VQE iteration converges to a local trap at one step, it can still "burrow" toward the exact solution by adding more operators, which preferentially deepens the occupied trap. This same mechanism helps highlight a surprising feature of ADAPT-VQE: It should not suffer optimization problems due to "barren plateaus".
パラメータランドスケープに不毛の台地が現れても,解析とシミュレーションによりADAPT-VQEがそのような領域を設計によって避けていることが判明した。
関連論文リスト
- Trainability Barriers in Low-Depth QAOA Landscapes [0.0]
QAOA(Quantum Alternating Operator Ansatz)は最適化問題を解くための変分量子アルゴリズムである。
以前の結果から、小さなパラメータの固定数の解析性能が保証された。
本研究は,近年の数値研究の焦点である中間体制における訓練の難しさについて考察する。
論文 参考訳(メタデータ) (2024-02-15T18:45:30Z) - Hamiltonian variational ansatz without barren plateaus [0.0]
変分量子アルゴリズムは、短期量子コンピュータの最も有望な応用の1つである。
その大きな可能性にもかかわらず、数十量子ビットを超える変分量子アルゴリズムの有用性は疑問視されている。
論文 参考訳(メタデータ) (2023-02-16T19:01:26Z) - Deep-Circuit QAOA [0.0]
深部量子回路におけるQAOAの展望について検討する。
一般的なQAOAインスタンスは、一意の局所最小値のような多くの好ましい性質を持つ。
ディープだがQAallyのディープ・サーキットに近づかないと、多くの良い特性が消える。
論文 参考訳(メタデータ) (2022-10-22T10:17:28Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
物理情報ニューラルネットワーク(PINN)は、損失関数のソフト制約として問題領域からの物理的知識を取り入れている。
これらのモデルの訓練性に及ぼす座標点の位置の影響について検討した。
モデルがより高い誤りを犯している領域に対して、より多くのコロケーションポイントを段階的に割り当てる適応的コロケーション方式を提案する。
論文 参考訳(メタデータ) (2022-07-08T18:17:06Z) - LAWS: Look Around and Warm-Start Natural Gradient Descent for Quantum
Neural Networks [11.844238544360149]
Vari Quantum Algorithm (VQA) は、ノイズ中間スケール量子コンピュータ (NISQ) における有望な性能のために最近注目されている。
パラメータ化量子回路(PQC)上でランダムなパラメータを持つVQAは、勾配が量子ビット数で指数関数的に消えるバレンプラトー(BP)によって特徴づけられる。
本稿では、古典的な1次最適化点から、VQAでよく使われるアルゴリズムの1つである量子自然勾配(QNG)について述べる。
そして、私たちはアンダーラインAroundアンダーラインを提案しました。
論文 参考訳(メタデータ) (2022-05-05T14:16:40Z) - BEINIT: Avoiding Barren Plateaus in Variational Quantum Algorithms [0.7462336024223667]
バレンプラトーは変分量子アルゴリズムの最適化において悪名高い問題である。
ベータ分布から引き出すことで、ユニタリゲートのパラメータを初期化する代替戦略を提案する。
提案手法は, 複雑な量子ニューラルネットワークがバレン高原で立ち往生する可能性を大幅に低減することを示す。
論文 参考訳(メタデータ) (2022-04-28T19:46:10Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - STORM+: Fully Adaptive SGD with Momentum for Nonconvex Optimization [74.1615979057429]
本研究では,スムーズな損失関数に対する期待値である非バッチ最適化問題について検討する。
我々の研究は、学習率と運動量パラメータを適応的に設定する新しいアプローチとともに、STORMアルゴリズムの上に構築されている。
論文 参考訳(メタデータ) (2021-11-01T15:43:36Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
任意サイズのパラメタライズド量子回路のためのFLexible Initializerを提案する。
FLIPは任意の種類のPQCに適用することができ、初期パラメータの一般的なセットに頼る代わりに、成功したパラメータの構造を学ぶように調整されている。
本稿では, 3つのシナリオにおいてFLIPを用いることの利点を述べる。不毛な高原における問題ファミリ, 最大カット問題インスタンスを解くPQCトレーニング, 1次元フェルミ-ハッバードモデルの基底状態エネルギーを求めるPQCトレーニングである。
論文 参考訳(メタデータ) (2021-03-15T17:38:33Z) - Characterizing the loss landscape of variational quantum circuits [77.34726150561087]
本稿では,VQCの損失関数のヘシアンを計算する方法を紹介する。
この情報がどのように解釈され、従来のニューラルネットワークと比較されるかを示す。
論文 参考訳(メタデータ) (2020-08-06T17:48:12Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
局所的な特徴は、ポイント・ツー・ポイント対応ではなく、リージョン・ツー・リージョンを提供する。
本稿では,全モデル推定パイプラインにおいて,地域間マッチングを効果的に活用するためのガイドラインを提案する。
実験により、アフィンソルバはより高速な実行時にポイントベースソルバに匹敵する精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-07-20T12:07:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。