論文の概要: MAP-SNN: Mapping Spike Activities with Multiplicity, Adaptability, and
Plasticity into Bio-Plausible Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2204.09893v1
- Date: Thu, 21 Apr 2022 05:36:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-16 03:51:27.629605
- Title: MAP-SNN: Mapping Spike Activities with Multiplicity, Adaptability, and
Plasticity into Bio-Plausible Spiking Neural Networks
- Title(参考訳): MAP-SNN:多目的性,適応性,可塑性を用いたスパイク活動の生体応用スパイクニューラルネットワークへのマッピング
- Authors: Chengting Yu, Yangkai Du, Mufeng Chen, Aili Wang, Gaoang Wang and
Erping Li
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、人間の脳の基本的なメカニズムを模倣しているため、生物学的に現実的で電力効率が高いと考えられている。
スパイク活動のモデル化における3つの特性について考察する:多重性、適応性、塑性(MAP)
提案したSNNモデルはニューロモルフィックデータセット(N-MNISTとSHD)上での競合性能を実現する。
- 参考スコア(独自算出の注目度): 4.806663076114504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Network (SNN) is considered more biologically realistic and
power-efficient as it imitates the fundamental mechanism of the human brain.
Recently, backpropagation (BP) based SNN learning algorithms that utilize deep
learning frameworks have achieved good performance. However,
bio-interpretability is partially neglected in those BP-based algorithms.
Toward bio-plausible BP-based SNNs, we consider three properties in modeling
spike activities: Multiplicity, Adaptability, and Plasticity (MAP). In terms of
multiplicity, we propose a Multiple-Spike Pattern (MSP) with multiple spike
transmission to strengthen model robustness in discrete time-iteration. To
realize adaptability, we adopt Spike Frequency Adaption (SFA) under MSP to
decrease spike activities for improved efficiency. For plasticity, we propose a
trainable convolutional synapse that models spike response current to enhance
the diversity of spiking neurons for temporal feature extraction. The proposed
SNN model achieves competitive performances on neuromorphic datasets: N-MNIST
and SHD. Furthermore, experimental results demonstrate that the proposed three
aspects are significant to iterative robustness, spike efficiency, and temporal
feature extraction capability of spike activities. In summary, this work
proposes a feasible scheme for bio-inspired spike activities with MAP, offering
a new neuromorphic perspective to embed biological characteristics into spiking
neural networks.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、人間の脳の基本的なメカニズムを模倣しているため、生物学的に現実的で電力効率が高いと考えられている。
近年,ディープラーニングフレームワークを利用したバックプロパゲーション(BP)ベースのSNN学習アルゴリズムの性能が向上している。
しかし、BPベースのアルゴリズムでは、生分解性は部分的に無視されている。
BPをベースとしたSNNは, マルチプライシティ, 適応性, 塑性(MAP)の3つの特性をモデル化する。
多重性の観点から、離散時間におけるモデルロバスト性を強化するために、多重スパイク伝送を用いた多重スパイクパターン(MSP)を提案する。
適応性を実現するため,MSPではスパイク周波数適応(SFA)を採用し,スパイク活性を減少させ効率を向上させる。
本研究では,スパイク応答電流をモデル化し,スパイクニューロンの多様性を高めて時間的特徴抽出を行う,学習可能な畳み込みシナプスを提案する。
提案したSNNモデルはニューロモルフィックデータセット(N-MNISTとSHD)上での競合性能を実現する。
さらに, 提案した3つの側面がスパイク活動の反復的堅牢性, スパイク効率, 時間的特徴抽出能力に重要であることを示した。
要約して、本研究はMAPを用いた生体刺激スパイク活動の実現可能なスキームを提案し、生体特性をスパイクニューラルネットワークに埋め込む新しいニューロモルフィックな視点を提供する。
関連論文リスト
- SPikE-SSM: A Sparse, Precise, and Efficient Spiking State Space Model for Long Sequences Learning [21.37966285950504]
スパイキングニューラルネットワーク(SNN)は、生物学的システムのスパイクベースおよびスパースの性質を活用することにより、エネルギー効率のよいソリューションを提供する。
最近の状態空間モデル(SSM)は計算効率とモデリング能力に優れる。
本研究では,SPikE-SSMと呼ばれる,スパースで高精度かつ効率的なスパイクSSMフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-07T12:20:38Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングの最前線である。
本稿では,SNNのパフォーマンスに革命をもたらす3つの画期的な研究をまとめる。
論文 参考訳(メタデータ) (2024-07-08T23:33:12Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Exploiting High Performance Spiking Neural Networks with Efficient
Spiking Patterns [4.8416725611508244]
スパイキングニューラルネットワーク(SNN)は、離散スパイクシーケンスを使用して情報を伝達し、脳の情報伝達を著しく模倣する。
本稿では、動的バーストパターンを導入し、短時間の性能と動的時間的性能のトレードオフを可能にするLeaky Integrate and Fire or Burst(LIFB)ニューロンを設計する。
論文 参考訳(メタデータ) (2023-01-29T04:22:07Z) - Developmental Plasticity-inspired Adaptive Pruning for Deep Spiking and Artificial Neural Networks [11.730984231143108]
発達的可塑性は、継続的な学習中に脳の構造を形成する際に顕著な役割を果たす。
ディープ人工知能ニューラルネットワーク(ANN)とスパイクニューラルネットワーク(SNN)の既存のネットワーク圧縮方法は、脳の発達する可塑性機構からほとんどインスピレーションを受けない。
本稿では, 樹状突起, シナプス, ニューロンの適応的発達的プルーニングからインスピレーションを得て, 塑性刺激による適応的プルーニング(DPAP)法を提案する。
論文 参考訳(メタデータ) (2022-11-23T05:26:51Z) - STSC-SNN: Spatio-Temporal Synaptic Connection with Temporal Convolution
and Attention for Spiking Neural Networks [7.422913384086416]
ニューロモルフィックコンピューティングのアルゴリズムモデルの一つであるスパイキングニューラルネットワーク(SNN)は、時間的処理能力のために多くの研究注目を集めている。
SNNの既存のシナプス構造は、ほぼ完全な接続や空間的2次元畳み込みであり、どちらも時間的依存関係を適切に抽出できない。
生体シナプスからインスピレーションを得てシナプス接続SNNモデルを提案し,シナプス接続の時間的受容場を強化する。
時間的依存を伴うシナプスモデルの提供は、分類タスクにおけるSNNの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:13:22Z) - Spikformer: When Spiking Neural Network Meets Transformer [102.91330530210037]
本稿では,スパイキングニューラルネットワーク(SNN)と自己認識機構という,生物学的にもっとも有効な2つの構造について考察する。
我々は、スパイキング・セルフ・アテンション(SSA)と、スパイキング・トランスフォーマー(Spikformer)という強力なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-29T14:16:49Z) - Flexible Transmitter Network [84.90891046882213]
現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
論文 参考訳(メタデータ) (2020-04-08T06:55:12Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。