論文の概要: Simple Quantum State Encodings for Hybrid Programming of Quantum
Simulators
- arxiv url: http://arxiv.org/abs/2204.11042v1
- Date: Sat, 23 Apr 2022 10:22:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-15 22:31:35.065709
- Title: Simple Quantum State Encodings for Hybrid Programming of Quantum
Simulators
- Title(参考訳): 量子シミュレータのハイブリッドプログラミングのための簡単な量子状態符号化
- Authors: Thomas Gabor, Marian Lingsch Rosenfeld, Claudia Linnhoff-Popien
- Abstract要約: 量子状態のエンコードに古典的なデータベースを用いることが,いくつかの実例で可能であることを示す。
我々は、より単純で半量子の回路をターゲットとした量子シミュレーションのさらなる最適化を提唱する。
- 参考スコア(独自算出の注目度): 10.953231643211229
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Especially sparse quantum states can be efficiently encoded with simple
classical data structures. We show the admissibility of using a classical
database to encode quantum states for a few practical examples and argue in
favor of further optimizations for quantum simulation targeting simpler, only
'semi-quantum' circuits.
- Abstract(参考訳): 特にスパース量子状態は、単純な古典的データ構造で効率的に符号化することができる。
量子状態のエンコードに古典データベースを使うことの許容性を示すとともに、よりシンプルで「半量子」回路のみをターゲットとした量子シミュレーションのさらなる最適化を推奨する。
関連論文リスト
- Quantum data encoding as a distinct abstraction layer in the design of quantum circuits [1.1510009152620668]
我々は量子データ符号化の概念、すなわち量子状態を通して設定されたデータセットの表現を提供する形式を定式化する。
主要な量子アルゴリズムが、データの読み込みに関して、いかに自然な解釈を見出すかを示す。
新しい概念的枠組みは、量子ベースのモンテカルロシミュレーションへの応用を考えることで実証されている。
論文 参考訳(メタデータ) (2024-09-14T07:00:58Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Sparse Quantum State Preparation for Strongly Correlated Systems [0.0]
原理として、指数関数的にスケールする多電子波関数を線形にスケールする量子ビットレジスタに符号化することは、従来の量子化学法の限界を克服するための有望な解決策を提供する。
基底状態量子アルゴリズムが実用的であるためには、量子ビットの初期化が要求される基底状態の高品質な近似に必須である。
量子状態準備(QSP)は、古典的な計算から得られる近似固有状態の生成を可能にするが、量子情報のオラクルとして頻繁に扱われる。
論文 参考訳(メタデータ) (2023-11-06T18:53:50Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - A Reorder Trick for Decision Diagram Based Quantum Circuit Simulation [0.4358626952482686]
本研究では,現状決定図に基づくシミュレータがシミュレーション時間でうまく動作しなかった量子回路の2つのクラスについて検討した。
本稿では,そのような量子回路のシミュレーションを促進するための,シンプルで強力なリオーダー手法を提案する。
論文 参考訳(メタデータ) (2022-11-14T04:55:25Z) - Conventions for Quantum Pseudocode [0.0]
コンベンションは任意の量子アルゴリズムを最低レベルまで提示するために使用することができる。
原則として、量子擬似符号の形式的なバージョンは、従来の言語の将来の拡張に使用できる。
論文 参考訳(メタデータ) (2022-11-04T16:24:45Z) - Quantum compression with classically simulatable circuits [0.5735035463793007]
本稿では,量子情報を低次元表現に変換する進化的アルゴリズムを用いて,量子オートエンコーダを設計する戦略を提案する。
量子状態の異なる族を圧縮するアルゴリズムの初期応用を実証した。
このアプローチは、計算資源の少ない量子データの低表現を見つけるために古典論理を用いる可能性を開く。
論文 参考訳(メタデータ) (2022-07-06T20:36:10Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
想像時間における進化は、量子多体系の基底状態を見つけるための顕著な技術である。
本稿では,量子コンピュータ上での仮想時間伝搬を実現するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-24T12:48:00Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
本稿では、生成した状態の古典的ベクトル形式を生成する効率的な読み出しプロトコルを提案する。
我々のプロトコルは、出力状態が入力行列の行空間にある場合に適合する。
我々の技術ツールの1つは、Gram-Schmidt正則手順を実行するための効率的な量子アルゴリズムである。
論文 参考訳(メタデータ) (2020-04-14T11:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。