論文の概要: Five Ps: Leverage Zones Towards Responsible AI
- arxiv url: http://arxiv.org/abs/2205.01070v1
- Date: Wed, 20 Apr 2022 04:20:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-09 04:04:15.095270
- Title: Five Ps: Leverage Zones Towards Responsible AI
- Title(参考訳): 5つのP: 責任あるAIに向けたレバレッジゾーン
- Authors: Ehsan Nabavi, Chris Browne
- Abstract要約: 我々は介入が効果的であると理解される範囲を改善する機会があると主張している。
システム思考」の文献から適応したレバレッジゾーンの概念を用いて,介入の有効性を評価する新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is a growing debate amongst academics and practitioners on whether
interventions made, thus far, towards Responsible AI would have been enough to
engage with root causes of AI problems. Failure to effect meaningful changes in
this system could see these initiatives to not reach their potential and lead
to the concept becoming another buzzword for companies to use in their
marketing campaigns. We propose that there is an opportunity to improve the
extent to which interventions are understood to be effective in their
contribution to the change required for Responsible AI. Using the notions of
leverage zones adapted from the 'Systems Thinking' literature, we suggest a
novel approach to evaluate the effectiveness of interventions, to focus on
those that may bring about the real change that is needed. In this paper we
argue that insights from using this perspective demonstrate that the majority
of current initiatives taken by various actors in the field, focus on low-order
interventions, such as short-term fixes, tweaking algorithms and updating
parameters, absent from higher-order interventions, such as redefining the
system's foundational structures that govern those parameters, or challenging
the underlying purpose upon which those structures are built and developed in
the first place(high-leverage). This paper presents a conceptual framework
called the Five Ps to identify interventions towards Responsible AI and
provides a scaffold for transdisciplinary question asking to improve outcomes
towards Responsible AI.
- Abstract(参考訳): これまでのところ、責任あるAIへの介入がAI問題の根本原因に関与するのに十分であったかどうか、学者や実践者の間で議論が続いている。
このシステムで有意義な変化を起こすことができないと、これらのイニシアチブが潜在能力に到達できず、企業がマーケティングキャンペーンで使用する新たなバズワードになる可能性がある。
我々は,Responsible AIに必要な変化に対して,介入が効果的であると理解される範囲を改善する機会があることを提案する。
本稿では,「システム思考」文献から適応したレバレッジゾーンの概念を用いて,介入の効果を評価する新しい手法を提案する。
In this paper we argue that insights from using this perspective demonstrate that the majority of current initiatives taken by various actors in the field, focus on low-order interventions, such as short-term fixes, tweaking algorithms and updating parameters, absent from higher-order interventions, such as redefining the system's foundational structures that govern those parameters, or challenging the underlying purpose upon which those structures are built and developed in the first place(high-leverage).
本稿では、責任あるAIに対する介入を特定するためのFive Psと呼ばれる概念的枠組みを提案し、責任あるAIに対する結果を改善するための学際的質問のための足場を提供する。
関連論文リスト
- Open Problems in Technical AI Governance [93.89102632003996]
テクニカルAIガバナンス(Technical AI Governance)は、AIの効果的なガバナンスを支援するための技術分析とツールである。
本論文は、AIガバナンスへの貢献を目指す技術研究者や研究資金提供者のためのリソースとして意図されている。
論文 参考訳(メタデータ) (2024-07-20T21:13:56Z) - Towards Human-centered Proactive Conversational Agents [60.57226361075793]
積極的システムと反応性システムの区別は、積極的システムのイニシアティブな性質にある。
我々は,人間中心型PCAの3つの重要な側面,すなわち知性,適応性,市民性に関する新たな分類法を確立する。
論文 参考訳(メタデータ) (2024-04-19T07:14:31Z) - Emergent Explainability: Adding a causal chain to neural network
inference [0.0]
本稿では,創発的コミュニケーション(EmCom)による説明可能な人工知能(xAI)の強化のための理論的枠組みを提案する。
我々は、EmComのAIシステムへの新たな統合を探求し、入力と出力の間の従来の連想関係から、より微妙で因果的解釈へのパラダイムシフトを提供する。
本稿は、このアプローチの理論的基盤、潜在的に広い応用、そして、責任と透明なAIシステムに対するニーズの増大と整合性について論じる。
論文 参考訳(メタデータ) (2024-01-29T02:28:39Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
大規模言語モデル(LLM)は、幅広いシナリオで人間の振る舞いを再現する能力を示した。
しかし、複雑なマルチ文字のソーシャルインタラクションを扱う能力については、まだ完全には研究されていない。
本稿では,新しいインタラクションフレームワークと評価手法を含むマルチエージェントインタラクション評価フレームワーク(AntEval)を紹介する。
論文 参考訳(メタデータ) (2024-01-12T11:18:00Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - Implementing Responsible AI: Tensions and Trade-Offs Between Ethics Aspects [21.133468554780404]
我々は、多種多様な文献にまたがるサポートに焦点をあてて、双方向のインタラクションに焦点をあてる。
このカタログは、倫理原則の側面間の相互作用の可能性の認識を高めるのに役立つ。
論文 参考訳(メタデータ) (2023-04-17T13:43:13Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - Building Affordance Relations for Robotic Agents - A Review [7.50722199393581]
Affordancesは、エージェントがオブジェクトでアクションを実行する可能性を記述する。
我々は,ロボット作業における余裕の概念を用いて,さまざまな戦略の共通基盤をレビューし,発見する。
AIエージェントの能力を向上させる可能性を秘めたアプライアンスを含むさまざまな興味深い研究方向を特定し、議論します。
論文 参考訳(メタデータ) (2021-05-14T08:35:18Z) - End-to-End Learning and Intervention in Games [60.41921763076017]
ゲームにおける学習と介入のための統一的なフレームワークを提供する。
明示的および暗黙的な区別に基づく2つのアプローチを提案する。
分析結果は、実世界のいくつかの問題を用いて検証される。
論文 参考訳(メタデータ) (2020-10-26T18:39:32Z) - Progressing Towards Responsible AI [2.191505742658975]
学会と人工知能に関する天文台(OSAI)は、AI4EUプロジェクトから発展した。
OSAIは、AI(倫理的、法的、社会的、経済的、文化的)の幅広い問題に対するリフレクションを刺激することを目指している
論文 参考訳(メタデータ) (2020-08-11T09:46:00Z) - Where Responsible AI meets Reality: Practitioner Perspectives on
Enablers for shifting Organizational Practices [3.119859292303396]
本稿では,組織文化と構造がAI実践における責任あるイニシアチブの有効性に与える影響を分析するための枠組みについて検討し,提案する。
我々は、業界で働く実践者との半構造化質的なインタビューの結果、共通の課題、倫理的緊張、そして責任あるAIイニシアチブのための効果的なイネーブラーについて調査する。
論文 参考訳(メタデータ) (2020-06-22T15:57:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。