New-Onset Diabetes Assessment Using Artificial Intelligence-Enhanced
Electrocardiography
- URL: http://arxiv.org/abs/2205.02900v2
- Date: Wed, 22 Mar 2023 04:57:56 GMT
- Title: New-Onset Diabetes Assessment Using Artificial Intelligence-Enhanced
Electrocardiography
- Authors: Neil Jethani, Aahlad Puli, Hao Zhang, Leonid Garber, Lior Jankelson,
Yindalon Aphinyanaphongs, and Rajesh Ranganath
- Abstract summary: Undiagnosed diabetes is present in 21.4% of adults with diabetes.
AI-enhanced electrocardiogram (ECG) could identify adults with new-onset diabetes.
- Score: 19.027974114710958
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Undiagnosed diabetes is present in 21.4% of adults with diabetes. Diabetes
can remain asymptomatic and undetected due to limitations in screening rates.
To address this issue, questionnaires, such as the American Diabetes
Association (ADA) Risk test, have been recommended for use by physicians and
the public. Based on evidence that blood glucose concentration can affect
cardiac electrophysiology, we hypothesized that an artificial intelligence
(AI)-enhanced electrocardiogram (ECG) could identify adults with new-onset
diabetes. We trained a neural network to estimate HbA1c using a 12-lead ECG and
readily available demographics. We retrospectively assembled a dataset
comprised of patients with paired ECG and HbA1c data. The population of
patients who receive both an ECG and HbA1c may a biased sample of the complete
outpatient population, so we adjusted the importance placed on each patient to
generate a more representative pseudo-population. We found ECG-based assessment
outperforms the ADA Risk test, achieving a higher area under the curve (0.80
vs. 0.68) and positive predictive value (13% vs. 9%) -- 2.6 times the
prevalence of diabetes in the cohort. The AI-enhanced ECG significantly
outperforms electrophysiologist interpretation of the ECG, suggesting that the
task is beyond current clinical capabilities. Given the prevalence of ECGs in
clinics and via wearable devices, such a tool would make precise, automated
diabetes assessment widely accessible.
Related papers
- Insulin Resistance Prediction From Wearables and Routine Blood Biomarkers [44.735350554750916]
We remotely recruited the largest dataset to date across the US to study insulin resistance.<n>Deep neural network models were developed to predict insulin resistance based on readily available digital and blood biomarkers.<n>Model showed 93% sensitivity and 95% adjusted specificity in obese and sedentary participants.
arXiv Detail & Related papers (2025-04-30T16:10:20Z) - Improving Early Prediction of Type 2 Diabetes Mellitus with ECG-DiaNet: A Multimodal Neural Network Leveraging Electrocardiogram and Clinical Risk Factors [0.09208007322096533]
ECG-DiaNet is a deep learning model that integrates electrocardiogram (ECG) features with clinical risk factors (CRFs) to enhance T2DM onset prediction.<n>The model's reliance on non-invasive and widely available ECG signals supports its feasibility in clinical and community health settings.
arXiv Detail & Related papers (2025-04-05T19:59:59Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
Photoplethysmography and electrocardiography can potentially enable continuous blood pressure (BP) monitoring.
Yet accurate and robust machine learning (ML) models remains challenging due to variability in data quality and patient-specific factors.
In this work, we investigate whether a model pre-trained on one modality can effectively be exploited to improve the accuracy of a different signal type.
Our approach achieves near state-of-the-art accuracy for diastolic BP and surpasses by 1.5x the accuracy of prior works for systolic BP.
arXiv Detail & Related papers (2025-02-10T13:33:12Z) - Let Curves Speak: A Continuous Glucose Monitor based Large Sensor Foundation Model for Diabetes Management [3.8195320624847833]
Integrating AI with continuous glucose monitoring holds promise for near-future glucose prediction.
CGM-LSM is pretrained on 15.96 million glucose records from 592 diabetes patients for near-future glucose prediction.
LSM achieved exceptional performance, with an rMSE of 29.81 mg/dL for type 1 diabetes patients and 23.49 mg/dL for type 2 diabetes patients in a two-hour prediction horizon.
arXiv Detail & Related papers (2024-12-12T21:35:13Z) - Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
We present GluFormer, a generative foundation model on biomedical temporal data based on a transformer architecture.
GluFormer generalizes to 15 different external datasets, including 4936 individuals across 5 different geographical regions.
It can also predict onset of future health outcomes even 4 years in advance.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - Privacy Preserved Blood Glucose Level Cross-Prediction: An Asynchronous Decentralized Federated Learning Approach [13.363740869325646]
Newly diagnosed Type 1 Diabetes (T1D) patients often struggle to obtain effective Blood Glucose (BG) prediction models.
We propose "GluADFL", blood Glucose prediction by Asynchronous Decentralized Federated Learning.
arXiv Detail & Related papers (2024-06-21T17:57:39Z) - Supervised Learning Models for Early Detection of Albuminuria Risk in
Type-2 Diabetes Mellitus Patients [0.0]
This study aimed to develop a supervised learning model to predict the risk of developing albuminuria in T2DM patients.
It consisted of 10 attributes as features and 1 attribute as the target (albuminuria)
It achieved accuracy and f1-score values as high as 0.74 and 0.75, respectively, making it suitable for screening purposes in predicting albuminuria in T2DM.
arXiv Detail & Related papers (2023-09-28T08:41:12Z) - Machine Learning-Based Diabetes Detection Using Photoplethysmography
Signal Features [0.0]
Diabetes is a prevalent chronic condition that compromises the health of millions of people worldwide.
Here, we present an alternative method to overcome shortcomings based on non-invasive optical photoplethysmography for detecting diabetes.
We classify non-Diabetic and Diabetic patients using the PPG signal and algorithms for training Logistic Regression and eXtreme Gradient Boosting.
Our findings are within the same range reported in the literature, indicating that machine learning methods are promising for developing remote, non-invasive, and continuous measurement devices for detecting and preventing diabetes.
arXiv Detail & Related papers (2023-08-02T14:10:03Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Deep artificial neural network for prediction of atrial fibrillation
through the analysis of 12-leads standard ECG [0.0]
Atrial Fibrillation (AF) is a heart's arrhythmia which, despite being often asymptomatic, represents an important risk factor for stroke.
We use Convolution Neural Networks to analyze ECG and predict AF starting from realistic datasets.
arXiv Detail & Related papers (2022-01-14T10:09:01Z) - LSTMs and Deep Residual Networks for Carbohydrate and Bolus
Recommendations in Type 1 Diabetes Management [4.01573226844961]
We introduce an LSTM-based approach to blood glucose level prediction aimed at "what if" scenarios.
We then derive a novel architecture for the same recommendation task.
Experimental evaluations using real patient data from the OhioT1DM dataset show that the new integrated architecture compares favorably with the previous LSTM-based approach.
arXiv Detail & Related papers (2021-03-06T19:06:14Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.