論文の概要: Physics-informed neural networks for PDE-constrained optimization and
control
- arxiv url: http://arxiv.org/abs/2205.03377v1
- Date: Fri, 6 May 2022 17:22:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-09 14:24:18.066813
- Title: Physics-informed neural networks for PDE-constrained optimization and
control
- Title(参考訳): 物理インフォームドニューラルネットワークによるPDE制約最適化と制御
- Authors: Jostein Barry-Straume, Arash Sarshar, Andrey A. Popov, and Adrian
Sandu
- Abstract要約: 制御物理インフォームドニューラルネットワークは、与えられたシステム状態とそのそれぞれの最適制御を同時に解決する。
Control PINNの成功は、以下のオープンループ最適制御問題を解くことで実証される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A fundamental problem of science is designing optimal control policies that
manipulate a given environment into producing a desired outcome. Control
Physics-Informed Neural Networks simultaneously solve a given system state, and
its respective optimal control, in a one-stage framework that conforms to
physical laws of the system. Prior approaches use a two-stage framework that
models and controls a system sequentially, whereas Control PINNs incorporates
the required optimality conditions in its architecture and loss function. The
success of Control PINNs is demonstrated by solving the following open-loop
optimal control problems: (i) an analytical problem (ii) a one-dimensional heat
equation, and (iii) a two-dimensional predator-prey problem.
- Abstract(参考訳): 科学の根本的な問題は、与えられた環境を操作して望ましい結果を生み出す最適な制御ポリシーを設計することである。
制御物理情報ニューラルネットワークは、システムの物理法則に従う一段階のフレームワークにおいて、与えられたシステム状態とその最適制御を同時に解決する。
以前のアプローチでは、システムのモデリングと制御をシーケンシャルに行う2段階フレームワークを使用しているが、コントロールピンはそのアーキテクチャと損失関数に必要な最適条件を取り入れている。
Control PINNの成功は、以下のオープンループ最適制御問題を解くことで示される。
i)分析上の問題
(ii)一次元の熱方程式、及び
(iii)二次元捕食・捕食問題。
関連論文リスト
- Receding Hamiltonian-Informed Optimal Neural Control and State Estimation for Closed-Loop Dynamical Systems [4.05766189327054]
Hamiltonian-Informed Optimal Neural (Hion) コントローラは、動的システムのためのニューラルネットワークベースの新しいクラスである。
ヒオンコントローラは将来の状態を推定し、ポントリャーギンの原理を用いて最適制御入力を計算する。
論文 参考訳(メタデータ) (2024-11-02T16:06:29Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Pontryagin Optimal Control via Neural Networks [19.546571122359534]
我々は,ニューラルネットワークをポントリャーギンの最大原理(PMP)と統合し,NN-PMP-Gradient の効率的なフレームワークを提案する。
結果として生じるコントローラは、未知の複雑な力学を持つシステムに実装することができる。
モデルフリーおよびモデルベース強化学習(RL)アルゴリズムと比較して, NN-PMP-Gradientは, 制御目的の観点から高いサンプル効率と性能を実現する。
論文 参考訳(メタデータ) (2022-12-30T06:47:03Z) - Optimal control for state preparation in two-qubit open quantum systems
driven by coherent and incoherent controls via GRAPE approach [77.34726150561087]
我々は、コヒーレントかつ非コヒーレントな時間依存制御によって駆動される2つの量子ビットのモデルを考える。
系の力学はゴリーニ=コサコフスキー=スダルシャン=リンドブラッドのマスター方程式によって支配される。
最適化制御の下で, フォン・ノイマンエントロピー, 純度, および1ビット還元密度行列の進化について検討した。
論文 参考訳(メタデータ) (2022-11-04T15:20:18Z) - Solving PDE-constrained Control Problems Using Operator Learning [14.30832827446317]
特殊正規化器を用いたPDE解演算子に対するサロゲートモデルを導入する。
私たちのフレームワークは、データ駆動とデータフリーの両方のケースに適用できます。
論文 参考訳(メタデータ) (2021-11-09T03:41:55Z) - A control method for solving high-dimensional Hamiltonian systems
through deep neural networks [0.2752817022620644]
まず、ハミルトニアン制御系がまさに解決すべき問題であるような対応する最適制御問題を導入し、その後、制御問題の異なるケースに適した2つの異なるアルゴリズムを開発し、深層ニューラルネットワークによる制御を近似する。
数値的な結果から、FBSDEを解く観点から以前に開発されたDeep FBSDE法と比較して、新しいアルゴリズムはより高速に収束する。
論文 参考訳(メタデータ) (2021-11-04T05:22:08Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
本研究では, 部分制御可能な線形力学系について, 基礎となる空間パターンを用いて検討する。
最適制御には無関係な状態変数を特徴付ける。
論文 参考訳(メタデータ) (2021-10-12T16:41:47Z) - Data-Driven Optimized Tracking Control Heuristic for MIMO Structures: A
Balance System Case Study [8.035375408614776]
PIDは2入力の2アウトプットバランスシステムで示される。
自己調整型非線形しきい値とニューラルネットワークを統合し、所望の過渡特性と定常特性を妥協する。
ニューラルネットワークは、客観的コスト関数のような重み付き導関数の最適化を訓練する。
論文 参考訳(メタデータ) (2021-04-01T02:00:20Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z) - Learning to Control PDEs with Differentiable Physics [102.36050646250871]
本稿では,ニューラルネットワークが長い時間をかけて複雑な非線形物理系の理解と制御を学べる新しい階層型予測器・相関器手法を提案する。
本手法は,複雑な物理系の理解に成功し,PDEに関わるタスクに対してそれらを制御できることを実証する。
論文 参考訳(メタデータ) (2020-01-21T11:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。