論文の概要: Crypto Pump and Dump Detection via Deep Learning Techniques
- arxiv url: http://arxiv.org/abs/2205.04646v1
- Date: Tue, 10 May 2022 03:24:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-14 20:47:47.757807
- Title: Crypto Pump and Dump Detection via Deep Learning Techniques
- Title(参考訳): 深層学習技術による暗号ポンプとダンプ検出
- Authors: Viswanath Chadalapaka, Kyle Chang, Gireesh Mahajan, Anuj Vasil
- Abstract要約: ダンプ・アンド・ダンプ・スキームは 暗号通貨に関する 最も一般的な詐欺行為だ
本稿では,この問題領域に対する2つの既存のニューラルネットワークアーキテクチャの新たな適用法を提案する。
深層学習ソリューションは、暗号通貨の既存のポンプ・ダンプ検出方法よりも大幅に優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the fact that cryptocurrencies themselves have experienced an
astonishing rate of adoption over the last decade, cryptocurrency fraud
detection is a heavily under-researched problem area. Of all fraudulent
activity regarding cryptocurrencies, pump and dump schemes are some of the most
common. Though some studies have been done on these kinds of scams in the stock
market, the lack of labelled stock data and the volatility unique to the
cryptocurrency space constrains the applicability of studies on the stock
market toward this problem domain. Furthermore, the only work done in this
space thus far has been either statistical in nature, or has been concerned
with classical machine learning models such as random forest trees. We propose
the novel application of two existing neural network architectures to this
problem domain and show that deep learning solutions can significantly
outperform all other existing pump and dump detection methods for
cryptocurrencies.
- Abstract(参考訳): 暗号通貨自体が過去10年で驚くべき採用率に達しているにもかかわらず、暗号通貨の不正検出は極めて未調査の問題領域である。
暗号通貨に関する不正行為の中で、ポンプとダンプのスキームが最も一般的である。
株式市場におけるこうした詐欺に関する研究はいくつか行われているが、ラベル付き株式データや暗号通貨分野特有のボラティリティの欠如は、この問題領域に対する株式市場の研究の適用性を制限している。
さらに、この分野でこれまで行われた作業は、自然界の統計学か、あるいはランダムフォレストツリーのような古典的機械学習モデルに関するものだった。
本稿では,この問題領域における2つの既存のニューラルネットワークアーキテクチャの新たな適用法を提案する。
- 全文 参考訳へのリンク
関連論文リスト
- Sequence-Based Target Coin Prediction for Cryptocurrency Pump-and-Dump [39.06710188537909]
本稿では, ターゲットコインの予測課題に焦点をあて, ポンプ前のターゲット交換に記載された全てのコインのポンプ確率を推定する。
我々は、2019年1月から2022年1月まで、Telegramチャンネルで組織された709件のP&Dの総合的な調査を行い、いくつかの異常かつ興味深いP&Dパターンを発掘する。
我々は,各チャネルのポンプ履歴をシーケンス表現としてエンコードする,SNNという新しいシーケンスベースニューラルネットワークを開発した。
論文 参考訳(メタデータ) (2022-04-21T16:34:53Z) - Inspection-L: Practical GNN-Based Money Laundering Detection System for
Bitcoin [0.0]
本稿では,自己教師型ディープグラフ情報マックス(DGI)に基づくグラフニューラルネットワーク(GNN)フレームワークであるInspection-Lを提案する。
私たちの知る限りでは、BitcoinにおけるAMLの問題に自己監督型GNNを適用するのは、私たちの提案が初めてです。
提案手法は楕円型データセットを用いて評価され,本手法が重要な分類基準の点において最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-20T06:19:18Z) - Do not rug on me: Zero-dimensional Scam Detection [0.0]
本稿では,20Kトークンのデータセットを拡大し,トークンを詐欺としてラベル付けするための新しい手法を提案する。
本稿では,トークン伝搬とスマートコントラクトに関連する新しい特徴を持つ機械学習に基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-16T16:22:43Z) - Profitable Strategy Design by Using Deep Reinforcement Learning for
Trades on Cryptocurrency Markets [2.741266294612776]
我々は,3つの暗号市場の戦略設計問題に対して,プロキシポリシー最適化,ソフトアクタ-C模倣,ジェネレーティブ・アドバシリティック・ラーニングを適用した。
未確認データに対するテスト結果は、投資家が市場を搾取し利益を得るためのエキスパートシステムを構築する上で、このアプローチの大きな可能性を示している。
論文 参考訳(メタデータ) (2022-01-15T18:45:03Z) - Detecting DeFi Securities Violations from Token Smart Contract Code with
Random Forest Classification [0.2523415604068923]
DeFi(Decentralized Finance)は、さまざまなブロックチェーン上のスマートコントラクトを通じて構築および配信される金融製品とサービスのシステムである。
DeFiは暗号通貨関連の犯罪、特に様々な種類の証券違反の中心となっている。
本研究の目的は、トークンのスマートコントラクトコードに基づいて、証券違反の可能性があるDeFiプロジェクトを特定することである。
論文 参考訳(メタデータ) (2021-12-06T01:44:08Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
本稿では,スパム検出のための動的深層アンサンブルモデルを提案する。
その結果、このモデルは高い精度、リコール、f1スコア、98.38%の精度を達成した。
論文 参考訳(メタデータ) (2021-10-10T17:19:37Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
本研究では,不確かさを意識した分類器が,強化学習の難しさを解消できることを示す。
正規化最大度(NML)分布の計算法を提案する。
得られたアルゴリズムは、カウントベースの探索法と、報酬関数を学習するための先行アルゴリズムの両方に多くの興味深い関係を持つことを示す。
論文 参考訳(メタデータ) (2021-07-15T08:19:57Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
従来のスマートコントラクトの脆弱性検出方法は、専門家の規則に大きく依存している。
最近のディープラーニングアプローチはこの問題を軽減するが、有用な専門家の知識をエンコードすることができない。
ソースコードから専門家パターンを抽出する自動ツールを開発する。
次に、深いグラフの特徴を抽出するために、コードをセマンティックグラフにキャストします。
論文 参考訳(メタデータ) (2021-06-17T07:12:13Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
コミュニティは、ネットワーク内の他のコミュニティと異なるメンバーの特徴と接続を明らかにする。
この調査は、最先端の手法の様々なカテゴリをカバーする新しい分類法を考案し、提案する。
ディープニューラルネットワーク(Deep Neural Network)は、畳み込みネットワーク(convolutional network)、グラフアテンションネットワーク( graph attention network)、生成的敵ネットワーク(generative adversarial network)、オートエンコーダ(autoencoder)に分けられる。
論文 参考訳(メタデータ) (2021-05-26T14:37:07Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z) - Neural Contextual Bandits with Deep Representation and Shallow
Exploration [105.8099566651448]
本稿では,深部ReLUニューラルネットワークの最後の隠蔽層を用いて,原特徴ベクトルを変換する新しい学習アルゴリズムを提案する。
既存のニューラルネットワークと比較して、ディープニューラルネットワークの最後の層でのみ探索する必要があるため、我々のアプローチは計算的にはるかに効率的です。
論文 参考訳(メタデータ) (2020-12-03T09:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。