論文の概要: Consistent Interpolating Ensembles via the Manifold-Hilbert Kernel
- arxiv url: http://arxiv.org/abs/2205.09342v1
- Date: Thu, 19 May 2022 06:40:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-20 12:36:47.917698
- Title: Consistent Interpolating Ensembles via the Manifold-Hilbert Kernel
- Title(参考訳): Manifold-Hilbertカーネルによる一貫性補間アンサンブル
- Authors: Yutong Wang, Clayton D. Scott
- Abstract要約: 我々は、訓練データを同時に補間するアンサンブル分類法を考案し、幅広いデータ分布のクラスに一貫性を持たせる。
球面に対して、多様体ヒルベルト核は重み付きランダムパーティションカーネルとして実現可能であることを示す。
- 参考スコア(独自算出の注目度): 11.759162160620678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research in the theory of overparametrized learning has sought to
establish generalization guarantees in the interpolating regime. Such results
have been established for a few common classes of methods, but so far not for
ensemble methods. We devise an ensemble classification method that
simultaneously interpolates the training data, and is consistent for a broad
class of data distributions. To this end, we define the manifold-Hilbert kernel
for data distributed on a Riemannian manifold. We prove that kernel smoothing
regression using the manifold-Hilbert kernel is weakly consistent in the
setting of Devroye et al. 1998. For the sphere, we show that the
manifold-Hilbert kernel can be realized as a weighted random partition kernel,
which arises as an infinite ensemble of partition-based classifiers.
- Abstract(参考訳): オーバーパラメタライズドラーニングの理論に関する最近の研究は、補間体制における一般化保証を確立することを目指している。
このような結果は、いくつかの一般的なメソッドのクラスに対して確立されているが、これまでのところアンサンブルメソッドには当てはまらない。
我々は、訓練データを同時に補間するアンサンブル分類法を考案し、幅広いデータ分布のクラスに一貫性を持たせる。
この目的のために、リーマン多様体上に分布するデータに対して多様体ヒルベルト核を定義する。
多様体ヒルベルト核を用いたカーネル平滑化回帰は、Devroye et al. 1998 の設定において弱い整合性を示す。
球面に対して、多様体ヒルベルト核は、分割に基づく分類器の無限アンサンブルとして生じる重み付きランダム分割核として実現できることを示した。
関連論文リスト
- Learning to Embed Distributions via Maximum Kernel Entropy [0.0]
固有データは、確率分布の集合からのサンプルと見なすことができる。
カーネルメソッドは、これらの分布を分類する学習の自然なアプローチとして現れてきた。
データ依存分散カーネルの教師なし学習のための新しい目的を提案する。
論文 参考訳(メタデータ) (2024-08-01T13:34:19Z) - Wiener Chaos in Kernel Regression: Towards Untangling Aleatoric and Epistemic Uncertainty [0.0]
我々はこの設定を一般化し、加法的、すなわち非ガウス計測ノイズによるカーネルリッジ回帰を考える。
GP後部分布に符号化された全不確実性から,データサンプルのノイズから生じる不確かさを識別できることを示す。
論文 参考訳(メタデータ) (2023-12-12T16:02:35Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
一般多様体上に生成拡散過程を構築するための原理的枠組みを導入する。
従来の拡散モデルの認知的アプローチに従う代わりに、橋梁プロセスの混合を用いて拡散過程を構築する。
混合過程を幾何学的に理解し,データ点への接する方向の重み付け平均としてドリフトを導出する。
論文 参考訳(メタデータ) (2023-10-11T06:04:40Z) - Improved learning theory for kernel distribution regression with
two-stage sampling [3.154269505086155]
カーネルメソッドは分散回帰問題に取り組む方法として選択されている。
ヒルベルトの埋め込みに対して,新しい誤差境界を提供する新しい非バイアス条件を導入する。
この条件は、最適輸送と平均埋め込みに基づくカーネルの3つの重要なクラスに当てはまることを示す。
論文 参考訳(メタデータ) (2023-08-28T06:29:09Z) - Variational Autoencoder Kernel Interpretation and Selection for
Classification [59.30734371401315]
本研究では,変分オートエンコーダの畳み込みエンコーダによって生成された特徴に基づく確率的分類器のカーネル選択手法を提案する。
提案した実装では、各カーネルに対して各分散が生成されるため、各潜伏変数を最終エンコーダの畳み込み層の単一カーネルに関連付けられた分布からサンプリングした。
サンプル化された潜伏変数で関連する機能を選択することで、カーネルの選択を実行し、非形式的機能とカーネルをフィルタリングすることができる。
論文 参考訳(メタデータ) (2022-09-10T17:22:53Z) - Self-supervised learning with rotation-invariant kernels [4.059849656394191]
組込み分布を超球面上の均一分布に近接させる汎用正規化損失を設計するための汎用カーネルフレームワークを提案する。
我々のフレームワークは、ハイパースフィア上で定義された回転不変カーネル(ドット生成カーネルとも呼ばれる)を使用する。
本実験は, 回転不変カーネルを用いることで, 最先端の手法と比較して, 競合する結果が得られることを示した。
論文 参考訳(メタデータ) (2022-07-28T08:06:24Z) - Recovery Guarantees for Kernel-based Clustering under Non-parametric
Mixture Models [26.847612684502998]
非パラメトリック混合モデルに基づくカーネルベースのクラスタリングアルゴリズムの統計的性能について検討する。
我々は、カーネルベースのデータクラスタリングとカーネル密度ベースのクラスタリングの間に重要な等価性を確立する。
論文 参考訳(メタデータ) (2021-10-18T17:23:54Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
我々は,ベイズクラスタリングモデルに対するMCMCアルゴリズムの出力を要約するための新しいアプローチを提案するために,後部類似性行列(PSM)の概念を構築した。
我々の研究の重要な貢献は、PSMが正の半定値であり、したがって確率的に動機付けられたカーネル行列を定義するのに使用できることである。
論文 参考訳(メタデータ) (2020-09-27T14:16:14Z) - A General Method for Robust Learning from Batches [56.59844655107251]
本稿では,バッチから頑健な学習を行う一般的なフレームワークについて考察し,連続ドメインを含む任意の領域に対する分類と分布推定の限界について考察する。
本手法は,一括分節分類,一括分節,単調,対数凹,ガウス混合分布推定のための,最初の頑健な計算効率の学習アルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-02-25T18:53:25Z) - Distributed, partially collapsed MCMC for Bayesian Nonparametrics [68.5279360794418]
ディリクレ法やベータ・ベルヌーリ法のようなモデルでよく用いられる完全無作為測度は独立な部分測度に分解可能であるという事実を利用する。
この分解を用いて、潜在測度を、インスタンス化された成分のみを含む有限測度と、他のすべての成分を含む無限測度に分割する。
得られたハイブリッドアルゴリズムは、収束保証を犠牲にすることなくスケーラブルな推論を可能にすることができる。
論文 参考訳(メタデータ) (2020-01-15T23:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。