論文の概要: Learning Progress Driven Multi-Agent Curriculum
- arxiv url: http://arxiv.org/abs/2205.10016v3
- Date: Thu, 15 May 2025 11:37:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:05.916301
- Title: Learning Progress Driven Multi-Agent Curriculum
- Title(参考訳): プログレッシブ駆動型マルチエージェントカリキュラムの学習
- Authors: Wenshuai Zhao, Zhiyuan Li, Joni Pajarinen,
- Abstract要約: エージェントの数は、マルチエージェント強化学習(MARL)タスクの難易度を制御するための効果的なカリキュラム変数となる。
MARLに既存の報酬に基づく自動カリキュラム学習手法を適用しながら、2つの潜在的な欠陥を同定する。
本稿では,TDエラーに基づく*ラーニングプログレス*尺度を用いてカリキュラムを制御し,初期コンテキスト分布から最終タスク特定項目へカリキュラムを進行させることによってカリキュラムを制御することを提案する。
- 参考スコア(独自算出の注目度): 16.228784877899976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The number of agents can be an effective curriculum variable for controlling the difficulty of multi-agent reinforcement learning (MARL) tasks. Existing work typically uses manually defined curricula such as linear schemes. We identify two potential flaws while applying existing reward-based automatic curriculum learning methods in MARL: (1) The expected episode return used to measure task difficulty has high variance; (2) Credit assignment difficulty can be exacerbated in tasks where increasing the number of agents yields higher returns which is common in many MARL tasks. To address these issues, we propose to control the curriculum by using a TD-error based *learning progress* measure and by letting the curriculum proceed from an initial context distribution to the final task specific one. Since our approach maintains a distribution over the number of agents and measures learning progress rather than absolute performance, which often increases with the number of agents, we alleviate problem (2). Moreover, the learning progress measure naturally alleviates problem (1) by aggregating returns. In three challenging sparse-reward MARL benchmarks, our approach outperforms state-of-the-art baselines.
- Abstract(参考訳): エージェントの数は、マルチエージェント強化学習(MARL)タスクの難易度を制御するための効果的なカリキュラム変数となる。
既存の作業は通常、線形スキームのような手動で定義されたカリキュラムを使用する。
1)タスクの難易度を測定するために使用される期待エピソードリターンはばらつきが高く,(2)エージェント数の増加が多くのMARLタスクに共通する高いリターンをもたらすタスクにおいて,クレジット割り当て困難が悪化する可能性がある。
これらの問題に対処するために、TDエラーに基づく*ラーニング進捗*尺度を用いてカリキュラムを制御し、カリキュラムを初期文脈分布から最終タスク特定項目に進めることを提案する。
提案手法はエージェント数に占める分布を維持し,絶対的なパフォーマンスよりも学習の進捗度を計測するので,エージェント数の増加に伴って増加することが多いので,問題を緩和する(第2報)。
さらに、学習進捗度尺度は、リターンを集約することにより、問題(1)を自然に軽減する。
3つの挑戦的なスパース逆MARLベンチマークでは、我々のアプローチは最先端のベースラインよりも優れています。
関連論文リスト
- SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks [110.20297293596005]
大規模言語モデル(LLM)エージェントは、実世界のタスクでマルチターンインタラクションを実行する必要がある。
LLMエージェントを最適化するための既存のマルチターンRLアルゴリズムは、LLMの一般化能力を活用しながら、複数回にわたって効果的なクレジット割り当てを行うことができない。
本稿では,新たなRLアルゴリズムであるSWEET-RLを提案する。
我々の実験は、SWEET-RLがコルベンチにおける成功率と勝利率を、他の最先端マルチターンRLアルゴリズムと比較して6%向上することを示した。
論文 参考訳(メタデータ) (2025-03-19T17:55:08Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcherは、大規模言語モデルの検索能力を高めるために設計された、2段階の結果に基づく新しいRLアプローチである。
本フレームワークは, コールドスタート時に, プロセス報酬や蒸留を必要とせず, RLのみに依存している。
提案手法は, クローズドソースGPT-4o-miniと比較して, 従来の強力なRAG法よりも有意に優れていた。
論文 参考訳(メタデータ) (2025-03-07T17:14:44Z) - Continuous Control with Coarse-to-fine Reinforcement Learning [15.585706638252441]
本稿ではRLエージェントを粗い方法で連続的なアクション空間にズームインするよう訓練するフレームワークを提案する。
我々は、CQN(Coarse-to-fine Q-Network)と呼ばれる、具体的な価値に基づくアルゴリズムをフレームワーク内に導入する。
CQNは、オンライントレーニングの数分後に現実世界の操作タスクを解決するために、しっかりと学習している。
論文 参考訳(メタデータ) (2024-07-10T16:04:08Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
大規模言語モデルを微調整するためのマルチターンRLアルゴリズムを構築するためのフレームワークを開発する。
我々のフレームワークは階層的なRLアプローチを採用し、2つのRLアルゴリズムを並列に実行している。
実験により,ArCHerはエージェントタスクの効率と性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-02-29T18:45:56Z) - RL$^3$: Boosting Meta Reinforcement Learning via RL inside RL$^2$ [12.111848705677142]
メタRLへの入力において、従来のRLを通してタスク毎に学習されるアクション値を含むハイブリッドアプローチであるRL$3$を提案する。
RL$3$は、RL$2$と比較して、短期的にはデータ効率を保ちながら、長期的には累積的な報酬を多く得ており、アウト・オブ・ディストリビューション・タスクよりも一般化されていることを示す。
論文 参考訳(メタデータ) (2023-06-28T04:16:16Z) - Train Hard, Fight Easy: Robust Meta Reinforcement Learning [78.16589993684698]
実世界のアプリケーションにおける強化学習(RL)の大きな課題は、環境、タスク、クライアントの違いである。
標準的なMRL法は、タスクよりも平均的なリターンを最適化するが、リスクや難易度の高いタスクでは悪い結果に悩まされることが多い。
本研究では, MRL の頑健な目標を制御レベルで定義する。
ロバストメタRLアルゴリズム(RoML)を用いてデータ非効率に対処する
論文 参考訳(メタデータ) (2023-01-26T14:54:39Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - URLB: Unsupervised Reinforcement Learning Benchmark [82.36060735454647]
教師なし強化学習ベンチマーク(URLB)を紹介する。
URLBは2つのフェーズで構成されている。
評価のために3つのドメインから12の連続制御タスクを提供し、8つの主要な教師なしRLメソッドに対してオープンソースコードを提供する。
論文 参考訳(メタデータ) (2021-10-28T15:07:01Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
強化学習(RL)は、任意のタスクメトリクスを報酬としてプラグインすることで、より柔軟なソリューションを提供する。
ソフトQ-ラーニングの観点からテキスト生成のための新しいRL式を導入する。
雑音/負の例から学習し、敵攻撃、即時生成など、幅広いタスクにアプローチを適用する。
論文 参考訳(メタデータ) (2021-06-14T18:48:40Z) - Cross-Trajectory Representation Learning for Zero-Shot Generalization in
RL [21.550201956884532]
高次元の観察空間上のいくつかのタスクで学んだポリシーを、トレーニング中に見えない同様のタスクに一般化する。
この課題に対する多くの有望なアプローチは、RLを2つの関数を同時に訓練するプロセスと見なしている。
本稿では,RLエージェント内で動作するクロストラジェクトリ表現学習(CTRL, Cross-Trajectory Representation Learning)を提案する。
論文 参考訳(メタデータ) (2021-06-04T00:43:10Z) - Continuous Coordination As a Realistic Scenario for Lifelong Learning [6.044372319762058]
ゼロショット設定と少数ショット設定の両方をサポートするマルチエージェント生涯学習テストベッドを導入する。
最近のMARL法、および制限メモリおよび計算における最新のLLLアルゴリズムのベンチマークを評価します。
我々は経験的に、我々の設定で訓練されたエージェントは、以前の作業による追加の仮定なしに、未発見のエージェントとうまく協調できることを示します。
論文 参考訳(メタデータ) (2021-03-04T18:44:03Z) - Conservative Q-Learning for Offline Reinforcement Learning [106.05582605650932]
CQLは既存のオフラインRLメソッドよりも大幅に優れており、多くの場合、ファイナルリターンの2~5倍高いポリシを学習しています。
理論的には、CQLは現在のポリシーの価値の低いバウンダリを生成し、理論的改善保証を伴う政策学習手順に組み込むことができることを示す。
論文 参考訳(メタデータ) (2020-06-08T17:53:42Z) - Self-Paced Deep Reinforcement Learning [42.467323141301826]
カリキュラム強化学習(CRL)は、学習を通して調整された一連のタスクに公開することにより、エージェントの学習速度と安定性を向上させる。
実証的な成功にもかかわらず、CRLのオープンな疑問は、手動設計を避けながら、与えられた強化学習(RL)エージェントのカリキュラムを自動的に生成する方法である。
本稿では,カリキュラム生成を推論問題として解釈し,タスク上の分布を段階的に学習し,対象タスクにアプローチすることで解答を提案する。
このアプローチは、エージェントがペースを制御し、しっかりとした理論的動機を持ち、深いRLアルゴリズムと容易に統合できる自動カリキュラム生成につながる。
論文 参考訳(メタデータ) (2020-04-24T15:48:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。