Thermodynamically free quantum measurements
- URL: http://arxiv.org/abs/2205.10847v2
- Date: Tue, 3 Jan 2023 14:17:34 GMT
- Title: Thermodynamically free quantum measurements
- Authors: M. Hamed Mohammady
- Abstract summary: A Maxwellian demon using such measurements never violates the second law of thermodynamics.
The demarcation of measurements that are not thermodynamically free paves the way for a resource-theoretic quantification of their thermodynamic cost.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thermal channels -- the free processes allowed in the resource theory of
quantum thermodynamics -- are generalised to thermal instruments, which we
interpret as implementing thermodynamically free quantum measurements; a
Maxwellian demon using such measurements never violates the second law of
thermodynamics. Further properties of thermal instruments are investigated and,
in particular, it is shown that they only measure observables commuting with
the Hamiltonian, and they thermalise the measured system when performing a
complete measurement, the latter of which indicates a thermodynamically induced
information-disturbance trade-off. The demarcation of measurements that are not
thermodynamically free paves the way for a resource-theoretic quantification of
their thermodynamic cost.
Related papers
- Thermodynamics-Consistent Graph Neural Networks [50.0791489606211]
We propose excess Gibbs free energy graph neural networks (GE-GNNs) for predicting composition-dependent activity coefficients of binary mixtures.
The GE-GNN architecture ensures thermodynamic consistency by predicting the molar excess Gibbs free energy.
We demonstrate high accuracy and thermodynamic consistency of the activity coefficient predictions.
arXiv Detail & Related papers (2024-07-08T06:58:56Z) - Sequential measurements thermometry with quantum many-body probes [0.0]
We show that single qubit sequential measurements in the computational basis allow precise thermometry of a many-body system.
The time between the two subsequent measurements should be smaller than the thermalization time so that the probe never thermalizes.
This allows the sequential measurement scheme to reach precision beyond the accuracy achievable by complex energy measurements on equilibrium probes.
arXiv Detail & Related papers (2024-03-15T07:54:40Z) - Quantum Computer-Based Verification of Quantum Thermodynamic Uncertainty Relation [1.6574413179773757]
Quantum thermodynamic uncertainty relations establish the fundamental trade-off between precision and thermodynamic costs.
We present an approach that utilizes a noisy quantum computer for verifying a general quantum thermodynamic uncertainty relation.
This study highlights the potential and limitations of noisy quantum computers for demonstrating quantum thermodynamic trade-offs.
arXiv Detail & Related papers (2024-02-29T15:55:29Z) - A thermodynamically consistent approach to the energy costs of quantum measurements [0.0]
We show a general microscopic model for a quantum measuring apparatus comprising a quantum probe coupled to a thermal bath.
We exploit the properties of the thermal bath which redundantly records the measurement result in its degrees of freedom.
We show that it is possible to perform a thermodynamically reversible measurement, thus reaching the minimal work expenditure.
arXiv Detail & Related papers (2024-02-25T09:31:48Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Catalytic Entropy Principles [1.2691047660244335]
entropy shows an unavoidable tendency of disorder in thermostatistics according to the second thermodynamics law.
We present the first unified principle consistent with the second thermodynamics law in terms of general quantum entropies.
Results should be interesting in the many-body theory and long-range quantum information processing.
arXiv Detail & Related papers (2021-04-08T01:13:36Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Quantum thermodynamically consistent local master equations [0.0]
We show that local master equations are consistent with thermodynamics and its laws without resorting to a microscopic model.
We consider a quantum system in contact with multiple baths and identify the relevant contributions to the total energy, heat currents and entropy production rate.
arXiv Detail & Related papers (2020-08-11T14:53:36Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
arXiv Detail & Related papers (2020-05-01T07:47:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.