論文の概要: Unbalanced CO-Optimal Transport
- arxiv url: http://arxiv.org/abs/2205.14923v2
- Date: Tue, 31 May 2022 13:17:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-04 10:35:24.214749
- Title: Unbalanced CO-Optimal Transport
- Title(参考訳): 非平衡コオプティカルトランスポート
- Authors: Quang Huy Tran, Hicham Janati, Nicolas Courty, R\'emi Flamary, Ievgen
Redko, Pinar Demetci, Ritambhara Singh
- Abstract要約: Co-Optimal Transport (COOT)は、特徴間のアライメントを推論することで、この比較をさらに進める。
実世界のデータに一様に表される外れ値に敏感であることを示す。
これにより、ノイズに対するロバスト性を確実に示す不均衡なCOOTを提案することができる。
- 参考スコア(独自算出の注目度): 16.9451175221198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimal transport (OT) compares probability distributions by computing a
meaningful alignment between their samples. CO-optimal transport (COOT) takes
this comparison further by inferring an alignment between features as well.
While this approach leads to better alignments and generalizes both OT and
Gromov-Wasserstein distances, we provide a theoretical result showing that it
is sensitive to outliers that are omnipresent in real-world data. This prompts
us to propose unbalanced COOT for which we provably show its robustness to
noise in the compared datasets. To the best of our knowledge, this is the first
such result for OT methods in incomparable spaces. With this result in hand, we
provide empirical evidence of this robustness for the challenging tasks of
heterogeneous domain adaptation with and without varying proportions of classes
and simultaneous alignment of samples and features across single-cell
measurements.
- Abstract(参考訳): 最適輸送(OT)は、サンプル間の有意なアライメントを計算することによって確率分布を比較する。
Co-Optimal Transport (COOT)は、特徴間のアライメントを推論することで、この比較をさらに進める。
このアプローチはより良いアライメントをもたらし、otとgromov-wasserstein距離の両方を一般化するが、実世界データに全現する外れ値に敏感であることを示す理論的結果を提供する。
これにより、比較したデータセットのノイズに対するロバスト性を確実に示す不均衡なCOOTを提案することができる。
我々の知る限りでは、これは非可換空間におけるOT法に対する最初の結果である。
この結果から, 単細胞計測によるサンプルと特徴の同時アライメントやクラスの割合の変動を伴わずに, 異種領域適応の課題に対して, この頑健性が実証的に証明できる。
関連論文リスト
- Propensity Score Alignment of Unpaired Multimodal Data [0.0]
マルチモーダル表現学習技術は通常、共通の表現を学ぶためにペア化されたサンプルに依存する。
本稿では,マルチモーダル表現学習において,異なるモダリティにまたがるアンペア化サンプルの整列化という課題に対処するアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-02T02:36:21Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Optimal Transport-Guided Conditional Score-Based Diffusion Models [63.14903268958398]
条件付きスコアベース拡散モデル(SBDM)は、条件付きデータを条件としてターゲットデータの条件付き生成を行い、画像翻訳において大きな成功を収めた。
本稿では, 最適輸送誘導条件付きスコアベース拡散モデル(OTCS)を提案する。
論文 参考訳(メタデータ) (2023-11-02T13:28:44Z) - Unbalanced Optimal Transport meets Sliced-Wasserstein [11.44982599214965]
本研究では、不均衡なOTをスライスするアイデアに基づく2つの新しい損失関数を提案し、その位相と統計的性質について検討する。
結果の方法論がモジュール化され、それに関連する作業が包含され、拡張されることが示されます。
論文 参考訳(メタデータ) (2023-06-12T15:15:00Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - Learning Optimal Transport Between two Empirical Distributions with
Normalizing Flows [12.91637880428221]
本稿では、ニューラルネットワークの柔軟性を活用して、最適輸送マップを近似的に学習することを提案する。
我々は、このOT問題の解を近似するために、非可逆ニューラルネットワークの特定の例、すなわち正規化フローが利用できることを示した。
論文 参考訳(メタデータ) (2022-07-04T08:08:47Z) - Unbalanced minibatch Optimal Transport; applications to Domain
Adaptation [8.889304968879163]
最適輸送距離は、非パラメトリック確率分布を比較するための機械学習の能力に多くの応用を見出した。
我々は、同じミニバッチ戦略と不均衡な最適輸送が組み合わさって、より堅牢な振る舞いをもたらすと論じる。
実験により, 領域適応に関する課題において, 不均衡な最適移動の利用は, 最近のベースラインと競合するか, はるかに良好な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2021-03-05T11:15:47Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
新しい発散として条件輸送(CT)を提案し、償却されたCT(ACT)コストと近似します。
ACTは条件付き輸送計画の計算を補正し、計算が容易な非バイアスのサンプル勾配を持つ。
さまざまなベンチマークデータセットのジェネレーティブモデリングでは、既存のジェネレーティブ敵対ネットワークのデフォルトの統計距離をACTに置き換えることで、一貫してパフォーマンスを向上させることが示されています。
論文 参考訳(メタデータ) (2020-12-28T05:14:22Z) - Robust Optimal Transport with Applications in Generative Modeling and
Domain Adaptation [120.69747175899421]
ワッサーシュタインのような最適輸送(OT)距離は、GANやドメイン適応のようないくつかの領域で使用されている。
本稿では,現代のディープラーニングアプリケーションに適用可能な,ロバストなOT最適化の計算効率のよい2つの形式を提案する。
提案手法では, ノイズの多いデータセット上で, 外部分布で劣化したGANモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2020-10-12T17:13:40Z) - Optimizing Vessel Trajectory Compression [71.42030830910227]
前回の研究では,AISの位置情報をオンラインで消費することで,血管軌跡の要約表現を提供するトラジェクトリ検出モジュールを導入しました。
この手法は、生データの少なくとも70%を冗長として廃棄することにより、元のコースからほとんど逸脱しない信頼性の高い軌道合成を提供することができる。
しかし、そのような軌道圧縮はパラメトリゼーションに非常に敏感である。
各容器のタイプを考慮し, 軌道のシナプスを改良する適切な構成を提供する。
論文 参考訳(メタデータ) (2020-05-11T20:38:56Z) - CO-Optimal Transport [19.267807479856575]
最適輸送(OT)は、2つの分布の対応関係を見つけ、類似性を測定するための強力なツールである。
我々は,CO-Optimal Transport のための COOT という新しいOT 問題を提案し,サンプルと特徴の2つのトランスポートマップを同時に最適化する。
ヘテロジニアス領域適応とコクラスタリング/データ要約における2つの機械学習アプリケーションを用いて、その汎用性を実証する。
論文 参考訳(メタデータ) (2020-02-10T13:33:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。