Optimal entanglement enhancing via conditional measurements
- URL: http://arxiv.org/abs/2206.01800v1
- Date: Fri, 3 Jun 2022 20:12:39 GMT
- Title: Optimal entanglement enhancing via conditional measurements
- Authors: Jiru Liu, Yusef Maleki, and M. Suhail Zubairy
- Abstract summary: We consider a protocol for entanglement enhancing in a two-mode squeezed vacuum state.
We analyze various settings and find an optimal setup for improving the entanglement of the state.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enhancing quantum entanglement is important for many quantum information
processing applications. In this paper, we consider a protocol for entanglement
enhancing in a two-mode squeezed vacuum state (TMSVS), attained based on photon
subtraction, photon catalysis, and photon addition. Central to such an
operation is the task of mixing and detecting number states with each mode of
TMSVS. We analyze various settings and find an optimal setup for improving the
entanglement of the state.
Related papers
- Optimization of state parameters in displacement assisted photon subtracted measurement-device-independent quantum key distribution [4.513878172564012]
Photon subtraction (PS) has been shown to enhance the performance of quantum information processing tasks.
This work investigates the role of non-Gaussian resource states in CV-MDI-QKD.
arXiv Detail & Related papers (2024-06-06T17:21:47Z) - Variational quantum state preparation for quantum-enhanced metrology in noisy systems [0.7652747219811168]
We simulate a low-depth variational quantum circuit (VQC) composed of a sequence of global rotations and entangling operations applied to a chain of qubits subject to dephasing noise.
We find that regardless of the details of the entangling operation implemented in the VQC, the optimal quantum states can be broadly classified into a trio of qualitative regimes.
Our findings are relevant for designing optimal state-preparation strategies for next-generation quantum sensors exploiting entanglement.
arXiv Detail & Related papers (2024-06-04T00:09:05Z) - Super-resolution and super-sensitivity of quantum LiDAR with multi-photonic state and binary outcome photon counting measurement [2.2120851074630177]
We are using multi-photonic state (MPS), superposition of four coherent states as the input state and binary outcome parity photon counting measurement.
We found enhancement in resolution and phase sensitivity in comparison to the coherent state and even coherent superposition state based quantum LiDAR.
arXiv Detail & Related papers (2023-09-21T13:46:26Z) - Imperfect photon detection in quantum illumination [0.0]
In quantum illumination, various detection schemes have been proposed for harnessing remaining quantum correlations of the entanglement-based resource state.
We investigate the performance of this scheme for realistic detection parameters in terms of detection efficiency, dark count probability, and photon number resolution.
We find that the requirements for photon number resolution in the two mixer outputs are highly asymmetric due to different associated photon number expectation values.
arXiv Detail & Related papers (2023-08-04T14:18:06Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Characterising and Tailoring Spatial Correlations in Multi-Mode
Parametric Downconversion [0.0]
We formalise a description of the two-photon wavefunction in the spatial domain, referred to as the collected joint-transverse-momentum-amplitude (JTMA)
We propose and demonstrate a practical and efficient method to accurately reconstruct the collected JTMA using a simple phase-step scan known as the $2Dpi$-measurement.
arXiv Detail & Related papers (2021-10-07T13:40:28Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.