論文の概要: Applying separative non-negative matrix factorization to extra-financial
data
- arxiv url: http://arxiv.org/abs/2206.04350v1
- Date: Thu, 9 Jun 2022 08:53:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-10 15:24:12.130052
- Title: Applying separative non-negative matrix factorization to extra-financial
data
- Title(参考訳): 分別非負行列分解を財務外データに適用する
- Authors: P Fogel, C Geissler, P Cotte, G Luta (GU)
- Abstract要約: 本稿では,非負行列分解法(NMF)のオリジナル応用について述べる。
NMFは、単純な主成分分析(PCA)よりも、より関連性の高い共変量と観測のクラスタリングを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present here an original application of the non-negative matrix
factorization (NMF) method, for the case of extra-financial data. These data
are subject to high correlations between co-variables, as well as between
observations. NMF provides a much more relevant clustering of co-variables and
observations than a simple principal component analysis (PCA). In addition, we
show that an initial data separation step before applying NMF further improves
the quality of the clustering.
- Abstract(参考訳): 本稿では,非負行列分解法(NMF)のオリジナル応用について述べる。
これらのデータは共変量と観測値の間に高い相関関係がある。
NMFは、単純な主成分分析(PCA)よりも、より関連性の高い共変量と観測のクラスタリングを提供する。
さらに,NMF適用前の初期データ分離ステップにより,クラスタリングの品質がさらに向上することを示す。
関連論文リスト
- Stratified-NMF for Heterogeneous Data [8.174199227297514]
本研究では,階層依存統計量と共有トピック行列を同時に学習する改良NMF目標であるStratified-NMFを提案する。
本手法を実世界の3つのデータセットに適用し,その特徴を実証的に検討する。
論文 参考訳(メタデータ) (2023-11-17T00:34:41Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
半負のテンソル因子分解(Semi-NTF)に基づく新しいマルチビュークラスタリングを開発する。
本モデルは、ビュー間の関係を直接考慮し、ビュー間の補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
論文 参考訳(メタデータ) (2023-03-29T14:54:19Z) - Non-Negative Matrix Factorization with Scale Data Structure Preservation [23.31865419578237]
本稿では,データ表現と次元縮小のために設計された非負行列分解法に属するモデルについて述べる。
この考え方は、NMFコスト関数に、元のデータポイントと変換されたデータポイントのペアの類似度行列のスケール関係を課すペナルティ項を追加することである。
提案したクラスタリングアルゴリズムは,既存のNMFベースのアルゴリズムや,実際のデータセットに適用した場合の多様体学習ベースのアルゴリズムと比較される。
論文 参考訳(メタデータ) (2022-09-22T09:32:18Z) - Rethinking Symmetric Matrix Factorization: A More General and Better
Clustering Perspective [5.174012156390378]
非負行列分解(NMF)は強い解釈性を持つクラスタリングに広く用いられている。
本稿では,非負でなくてもよい対称行列の分解について検討する。
本稿では,クラスタリング性能を高めるために,正規化項を持つ効率的な分解アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-06T14:32:11Z) - Finding Rule-Interpretable Non-Negative Data Representation [2.817412580574242]
ルールベース記述と部分ベース表現の利点を融合したNMF方式を提案する。
提案手法は、集中型埋め込みや教師付きマルチラベルNMFの実行といったタスクにおいて、多くの利点を提供する。
論文 参考訳(メタデータ) (2022-06-03T10:20:46Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
非負の行列因子化(NMF)は、非負のデータを部品ベースの表現で表すことの有効性から、近年広く研究されている。
そこで本研究では,係数行列に対数ノルムを課した新しいNMF法を提案する。
提案手法のロバスト性を高めるために,$ell_2,log$-(pseudo) ノルムを新たに提案した。
論文 参考訳(メタデータ) (2022-04-22T11:38:10Z) - Co-Separable Nonnegative Matrix Factorization [20.550794776914508]
非負行列分解(NMF)はパターン認識の分野で人気があるモデルである。
我々はこのNMFをCoS-NMF(CoS-NMF)と呼ぶ。
CoS-NMFの最適化モデルを提案し,その解法に置換高速勾配法を適用した。
論文 参考訳(メタデータ) (2021-09-02T07:05:04Z) - Feature Weighted Non-negative Matrix Factorization [92.45013716097753]
本稿では,FNMF(Feature weighted Non- negative Matrix Factorization)を提案する。
FNMFはその重要性に応じて特徴の重みを適応的に学習する。
提案する最適化アルゴリズムを用いて効率的に解くことができる。
論文 参考訳(メタデータ) (2021-03-24T21:17:17Z) - Entropy Minimizing Matrix Factorization [102.26446204624885]
NMF(Nonnegative Matrix Factorization)は、広く使用されているデータ分析技術であり、多くの実際のタスクで印象的な結果をもたらしました。
本研究では,上述の問題に対処するために,EMMF (Entropy Minimizing Matrix Factorization framework) を開発した。
通常、外れ値が通常のサンプルよりもはるかに小さいことを考えると、行列分解のために新しいエントロピー損失関数が確立される。
論文 参考訳(メタデータ) (2021-03-24T21:08:43Z) - Self-supervised Symmetric Nonnegative Matrix Factorization [82.59905231819685]
シンメトリー非負係数行列(SNMF)は、データクラスタリングの強力な方法であることを示した。
より良いクラスタリング結果を求めるアンサンブルクラスタリングにインスパイアされた,自己監視型SNMF(S$3$NMF)を提案する。
SNMFのコード特性に対する感度を、追加情報に頼らずに活用しています。
論文 参考訳(メタデータ) (2021-03-02T12:47:40Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
本稿では,複数のクラスタリングを組み合わせ,個々のクラスタリングよりも優れたパフォーマンスを実現するクラスタリングアンサンブルの問題について検討する。
本稿では,この問題をグローバルな視点から解くために,新しい低ランクテンソル近似法を提案する。
7つのベンチマークデータセットを用いた実験の結果,提案手法は12の最先端手法と比較して,クラスタリング性能のブレークスルーを達成した。
論文 参考訳(メタデータ) (2020-12-16T13:01:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。