論文の概要: Hardness prediction of age-hardening aluminum alloy based on ensemble
learning
- arxiv url: http://arxiv.org/abs/2206.08011v1
- Date: Thu, 16 Jun 2022 09:14:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-17 16:23:39.449640
- Title: Hardness prediction of age-hardening aluminum alloy based on ensemble
learning
- Title(参考訳): アンサンブル学習に基づく時効硬化アルミニウム合金の硬さ予測
- Authors: Zuo Houchen (1), Jiang Yongquan (2), Yang Yan (2), Liu Baoying (2) and
Hu Jie (1) ((1) State Key Labratory of Traction Power, Southwest Jiaotong
University, Chengdu, China, (2) School of Computing and Artificial
Intelligence, Southwest Jiaotong University, Chengdu, China.)
- Abstract要約: 合金は組成、加齢条件(時間と温度)を入力し、その硬さを予測するのに使用される。
実験により、正しい二次学習者を選択することで、モデルの予測精度をさらに向上できることが示された。
本論文は,深層ニューラルネットワークに基づく2次学習者改善のための注意機構を導入し,より優れた性能の融合モデルを得る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of artificial intelligence, the combination of
material database and machine learning has driven the progress of material
informatics. Because aluminum alloy is widely used in many fields, so it is
significant to predict the properties of aluminum alloy. In this thesis, the
data of Al-Cu-Mg-X (X: Zn, Zr, etc.) alloy are used to input the composition,
aging conditions (time and temperature) and predict its hardness. An ensemble
learning solution based on automatic machine learning and an attention
mechanism introduced into the secondary learner of deep neural network are
proposed respectively. The experimental results show that selecting the correct
secondary learner can further improve the prediction accuracy of the model.
This manuscript introduces the attention mechanism to improve the secondary
learner based on deep neural network, and obtains a fusion model with better
performance. The R-Square of the best model is 0.9697 and the MAE is 3.4518HV.
- Abstract(参考訳): 人工知能の急速な発展に伴い、材料データベースと機械学習の組み合わせにより、材料情報技術の進歩が加速した。
アルミニウム合金は様々な分野で広く使われているため、アルミニウム合金の特性を予測することは重要である。
この論文では、Al-Cu-Mg-X(X:Zn,Zrなど)合金の組成、加齢条件(時間と温度)を入力し、その硬さを予測する。
ディープニューラルネットワークの第2学習者に対して,自動機械学習に基づくアンサンブル学習ソリューションと注意機構をそれぞれ提案する。
実験の結果, 正しい二次学習者を選択することで, モデルの予測精度をさらに向上できることがわかった。
本書では,深層ニューラルネットワークに基づく二次学習者を改善するための注意機構を導入し,より優れた融合モデルを得る。
R-Squareは0.9697、MAEは3.4518HVである。
関連論文リスト
- Foundation Model for Composite Materials and Microstructural Analysis [49.1574468325115]
複合材料に特化して設計された基礎モデルを提案する。
我々のモデルは、頑健な潜伏特性を学習するために、短繊維コンポジットのデータセット上で事前訓練されている。
転送学習中、MMAEはR2スコアが0.959に達し、限られたデータで訓練しても0.91を超えている均質化剛性を正確に予測する。
論文 参考訳(メタデータ) (2024-11-10T19:06:25Z) - Deep Learning-Driven Microstructure Characterization and Vickers Hardness Prediction of Mg-Gd Alloys [7.246224582503583]
本研究では,画像処理と深層学習技術に基づくマルチモーダル融合学習フレームワークを提案する。
固溶Mg-Gd合金のビッカース硬さを正確に予測するために, 元素組成と組織特性を統合した。
論文 参考訳(メタデータ) (2024-10-27T10:28:29Z) - Biomimetic Machine Learning approach for prediction of mechanical properties of Additive Friction Stir Deposited Aluminum alloys based walled structures [0.0]
本研究は, バイオミメティック・機械学習を用いてAFSD(Additive Friction Stir deposited)アルミニウム合金壁構造の機械的特性を予測する新しい手法を提案する。
この研究は、AFSDプロセスの数値モデリングと遺伝的アルゴリズム最適化機械学習モデルを組み合わせて、von Misesストレスと対数ひずみを予測する。
論文 参考訳(メタデータ) (2024-08-05T13:27:54Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
本稿では,既存の複雑な相互作用モデルから,知識蒸留によるCTR予測のための高次特徴相互作用を学習するための非巡回グラフファクトリゼーションマシン(KD-DAGFM)を提案する。
KD-DAGFMは、オンラインとオフラインの両方の実験において、最先端のFLOPの21.5%未満で最高の性能を達成する。
論文 参考訳(メタデータ) (2022-11-21T03:09:42Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z) - Prediction of properties of metal alloy materials based on machine
learning [6.827605235800052]
本稿では, 金属合金の原子体積, 原子エネルギー, 原子生成エネルギーに関する実験を行う。
従来の機械学習モデル、ディープラーニングネットワーク、自動機械学習を通じて、材料特性予測における機械学習の有効性を検証する。
実験結果から,機械学習が材料特性を正確に予測できることが示唆された。
論文 参考訳(メタデータ) (2021-09-20T09:40:36Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Machine learning with persistent homology and chemical word embeddings
improves prediction accuracy and interpretability in metal-organic frameworks [0.07874708385247352]
材料の構造と化学の複雑な表現をキャプチャする記述子を自動的に生成するエンド・ツー・エンドの機械学習モデルを提案する。
物質系から直接、幾何学的および化学的情報をカプセル化する。
提案手法は, 対象物間での精度, 転送可能性の両面において, 一般的に用いられている手作業による特徴量から構築したモデルに比べ, かなり改善されている。
論文 参考訳(メタデータ) (2020-10-01T16:31:46Z) - Machine learning for metal additive manufacturing: Predicting
temperature and melt pool fluid dynamics using physics-informed neural
networks [0.0]
本稿では,データと最初の物理原理を融合する物理情報ニューラルネットワーク(PINN)フレームワークを提案する。
これは、PINNの3次元AMプロセスモデリングへの最初の応用である。
PINNは、金属AMプロセス中の温度とプールのダイナミクスをある程度のラベル付きデータセットで正確に予測することができる。
論文 参考訳(メタデータ) (2020-07-28T20:34:38Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。