論文の概要: The Importance of Background Information for Out of Distribution
Generalization
- arxiv url: http://arxiv.org/abs/2206.08794v1
- Date: Fri, 17 Jun 2022 14:12:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-20 20:07:36.501076
- Title: The Importance of Background Information for Out of Distribution
Generalization
- Title(参考訳): 流通一般化のための背景情報の重要性
- Authors: Jupinder Parmar, Khaled Saab, Brian Pogatchnik, Daniel Rubin,
Christopher R\'e
- Abstract要約: 医用画像分類において,画像のどの領域が重要かを検討する。
そこで我々は,すべての領域をカバーするタスク特化マスクを開発した。
これらのタスク固有のマスクの使用に加えて、トレーニングデータサイズをスケールアップする必要がある。
- 参考スコア(独自算出の注目度): 5.939674409266853
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Domain generalization in medical image classification is an important problem
for trustworthy machine learning to be deployed in healthcare. We find that
existing approaches for domain generalization which utilize ground-truth
abnormality segmentations to control feature attributions have poor
out-of-distribution (OOD) performance relative to the standard baseline of
empirical risk minimization (ERM). We investigate what regions of an image are
important for medical image classification and show that parts of the
background, that which is not contained in the abnormality segmentation,
provides helpful signal. We then develop a new task-specific mask which covers
all relevant regions. Utilizing this new segmentation mask significantly
improves the performance of the existing methods on the OOD test sets. To
obtain better generalization results than ERM, we find it necessary to scale up
the training data size in addition to the usage of these task-specific masks.
- Abstract(参考訳): 医用画像分類におけるドメインの一般化は、信頼できる機械学習を医療に展開する上で重要な問題である。
我々は,機能帰属を制御するために接地的異常分節を用いた既存のドメイン一般化手法は,経験的リスク最小化(erm)の標準ベースラインと比較して,アウト・オブ・ディストリビューション(ood)性能に乏しいことを見出した。
画像のどの領域が医用画像分類に重要かを調査し,異常分割に含まれない背景の一部が有用な信号となることを示す。
次に、関連するすべての領域をカバーする新しいタスク特化マスクを開発する。
新しいセグメンテーションマスクを利用することで、OODテストセット上の既存のメソッドのパフォーマンスが大幅に向上する。
ermよりも優れた一般化結果を得るためには,これらのタスク固有のマスクの使用に加えて,トレーニングデータサイズをスケールアップする必要がある。
関連論文リスト
- ConDiSR: Contrastive Disentanglement and Style Regularization for Single Domain Generalization [42.810247034149214]
医療データは、しばしば分散シフトを示し、標準パイプラインを使用してトレーニングされたディープラーニングモデルのテスト時のパフォーマンス劣化を引き起こす。
本研究は、分類タスクの文脈において、単一ドメインの一般化フレームワークを探索することの重要性と課題を強調した。
論文 参考訳(メタデータ) (2024-03-14T13:50:44Z) - Explanations of Classifiers Enhance Medical Image Segmentation via
End-to-end Pre-training [37.11542605885003]
医用画像セグメンテーションは、ディープニューラルネットワークを用いて、胸部X線写真などの医用画像の異常な構造を特定し、発見することを目的としている。
我々の研究は、よく訓練された分類器から説明を集め、セグメンテーションタスクの擬似ラベルを生成する。
次に、インテグレート・グラディエント(IG)法を用いて、分類器から得られた説明を蒸留し、強化し、大規模診断指向のローカライゼーション・ラベル(DoLL)を生成する。
これらのDLLアノテーション付き画像は、新型コロナウイルス感染症、肺、心臓、鎖骨などの下流のセグメンテーションタスクのために、モデルを微調整する前に事前訓練するために使用される。
論文 参考訳(メタデータ) (2024-01-16T16:18:42Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - MLN-net: A multi-source medical image segmentation method for clustered
microcalcifications using multiple layer normalization [8.969596531778121]
本稿では,MLN-netという新しいフレームワークを提案する。
本稿では,異なる領域のクラスタ化マイクロ石灰化セグメンテーションにおけるMLN-netの有効性を検証した。
論文 参考訳(メタデータ) (2023-09-06T05:56:30Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - ScoreNet: Learning Non-Uniform Attention and Augmentation for
Transformer-Based Histopathological Image Classification [11.680355561258427]
高解像度画像はデジタル病理の進歩を妨げる。
パッチベースの処理は、しばしば複数のインスタンス学習(MIL)を組み込んで、画像レベルの予測をもたらす局所的なパッチレベルの表現を集約する。
本稿では,組織像分類に適したトランスフォーマーアーキテクチャを提案する。
局所的なきめ細かな注意と粗いグローバルな注意機構を組み合わせることで、高解像度画像の意味的な表現を効率的な計算コストで学習する。
論文 参考訳(メタデータ) (2022-02-15T16:55:09Z) - Learning Inductive Attention Guidance for Partially Supervised
Pancreatic Ductal Adenocarcinoma Prediction [73.96902906734522]
膵管腺癌(PDAC)は、アメリカ合衆国で3番目に多いがん死の原因である。
本稿では,全てのトレーニングデータに対して安価な画像レベルのアノテーションが提供され,それらのサブセットに対してのみ,コストのかかるvoxelアノテーションが利用可能となる,部分教師付き設定について考察する。
Inductive Attention Guidance Network (IAG-Net) を提案し、通常の/PDAC分類のためのグローバル画像レベルの分類器と半教師付きPDAC分類のためのローカルボクセルレベルの分類器を共同で学習する。
論文 参考訳(メタデータ) (2021-05-31T08:16:09Z) - Evaluation of Complexity Measures for Deep Learning Generalization in
Medical Image Analysis [77.34726150561087]
PAC-ベイズ平坦度とパスノルムに基づく測度は、モデルとデータの組み合わせについて最も一貫した説明をもたらす。
また,乳房画像に対するマルチタスク分類とセグメンテーションのアプローチについても検討した。
論文 参考訳(メタデータ) (2021-03-04T20:58:22Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。