論文の概要: Benign overfitting and adaptive nonparametric regression
- arxiv url: http://arxiv.org/abs/2206.13347v1
- Date: Mon, 27 Jun 2022 14:50:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-28 14:20:40.903864
- Title: Benign overfitting and adaptive nonparametric regression
- Title(参考訳): 良性過剰と適応的非パラメトリック回帰
- Authors: Julien Chhor, Suzanne Sigalla and Alexandre B. Tsybakov
- Abstract要約: 本研究では,データポイントを高い確率で補間する連続関数である推定器を構築する。
我々は未知の滑らかさに適応してH"古いクラスのスケールにおいて平均2乗リスクの下で最小値の最適速度を得る。
- 参考スコア(独自算出の注目度): 71.70323672531606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the nonparametric regression setting, we construct an estimator which is a
continuous function interpolating the data points with high probability, while
attaining minimax optimal rates under mean squared risk on the scale of
H\"older classes adaptively to the unknown smoothness.
- Abstract(参考訳): 非パラメトリック回帰設定では、データポイントを高い確率で補間する連続関数である推定器を構築し、未知の滑らかさに適応してh\"olderクラスのスケールにおいて平均二乗リスクの下で最小の最適レートを得る。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Stochastic Gradient Descent for Nonparametric Regression [11.24895028006405]
本稿では,非パラメトリック加法モデルをトレーニングするための反復アルゴリズムを提案する。
結果の不等式は、モデルの誤特定を可能にする託宣を満足していることが示される。
論文 参考訳(メタデータ) (2024-01-01T08:03:52Z) - Adaptive and non-adaptive minimax rates for weighted Laplacian-eigenmap
based nonparametric regression [14.003044924094597]
重み付きラプラシアン・固有写像に基づく非パラメトリック回帰法の一群に対する適応的および非適応的収束率を示す。
論文 参考訳(メタデータ) (2023-10-31T20:25:36Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Interpolating Discriminant Functions in High-Dimensional Gaussian Latent
Mixtures [1.4213973379473654]
本稿では,仮定モデルに基づく高次元特徴のバイナリ分類について考察する。
一般化された最小二乗推定器を用いて、最適分離超平面の方向を推定する。
論文 参考訳(メタデータ) (2022-10-25T21:19:50Z) - Improving Generalization via Uncertainty Driven Perturbations [107.45752065285821]
トレーニングデータポイントの不確実性による摂動について考察する。
損失駆動摂動とは異なり、不確実性誘導摂動は決定境界を越えてはならない。
線形モデルにおいて,UDPがロバスト性マージン決定を達成することが保証されていることを示す。
論文 参考訳(メタデータ) (2022-02-11T16:22:08Z) - Optimal Rates for Random Order Online Optimization [60.011653053877126]
敵が損失関数を選択できるカテットガルバー2020onlineについて検討するが、一様にランダムな順序で提示される。
2020onlineアルゴリズムが最適境界を達成し,安定性を著しく向上することを示す。
論文 参考訳(メタデータ) (2021-06-29T09:48:46Z) - Distribution-Free Robust Linear Regression [5.532477732693]
共変体の分布を仮定せずにランダムな設計線形回帰を研究する。
最適部分指数尾を持つオーダー$d/n$の過大なリスクを達成する非線形推定器を構築する。
我々は、Gy"orfi, Kohler, Krzyzak, Walk が原因で、truncated least squares 推定器の古典的境界の最適版を証明した。
論文 参考訳(メタデータ) (2021-02-25T15:10:41Z) - Support estimation in high-dimensional heteroscedastic mean regression [2.28438857884398]
ランダムな設計と、潜在的にヘテロセダスティックで重み付きエラーを伴う線形平均回帰モデルを考える。
我々は,問題のパラメータに依存するチューニングパラメータを備えた,厳密な凸・滑らかなHuber損失関数の変種を用いる。
得られた推定器に対して、$ell_infty$ノルムにおける符号一貫性と最適収束率を示す。
論文 参考訳(メタデータ) (2020-11-03T09:46:31Z) - Support recovery and sup-norm convergence rates for sparse pivotal
estimation [79.13844065776928]
高次元スパース回帰では、ピボット推定器は最適な正規化パラメータがノイズレベルに依存しない推定器である。
非滑らかで滑らかな単一タスクとマルチタスク正方形ラッソ型推定器に対するミニマックス超ノルム収束率を示す。
論文 参考訳(メタデータ) (2020-01-15T16:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。