論文の概要: The d-separation criterion in Categorical Probability
- arxiv url: http://arxiv.org/abs/2207.05740v1
- Date: Tue, 12 Jul 2022 17:58:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-13 15:11:54.459261
- Title: The d-separation criterion in Categorical Probability
- Title(参考訳): カテゴリー確率におけるd分離基準
- Authors: Tobias Fritz, Andreas Klingler
- Abstract要約: d-分離基準は、特定の条件独立性を通して有向非巡回グラフとの結合確率分布の整合性を検出する。
この研究は因果モデルのカテゴリー的定義、d-分離のカテゴリー的概念を導入し、d-分離基準の抽象的なバージョンを証明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The d-separation criterion detects the compatibility of a joint probability
distribution with a directed acyclic graph through certain conditional
independences. In this work, we study this problem in the context of
categorical probability theory by introducing a categorical definition of
causal models, a categorical notion of d-separation, and proving an abstract
version of the d-separation criterion. This approach has two main benefits.
First, categorical d-separation is a very intuitive criterion based on
topological connectedness. Second, our results apply in measure-theoretic
probability (with standard Borel spaces), and therefore provide a clean proof
of the equivalence of local and global Markov properties with causal
compatibility for continuous and mixed variables.
- Abstract(参考訳): d-分離基準は、特定の条件独立性を通して有向非巡回グラフとの結合確率分布の整合性を検出する。
本研究では, 因果モデルの分類的定義, d-分離の分類的概念を導入し, d-分離基準の抽象版を証明することで, 分類的確率論の文脈でこの問題を研究する。
このアプローチには2つの大きなメリットがあります。
まず、圏 d-分離は位相連結性に基づく非常に直感的な基準である。
第二に、この結果は測度論的確率(標準ボレル空間)に適用され、従って連続変数と混合変数の因果整合を伴う局所的および大域的マルコフ性質の同値性を明確に証明する。
関連論文リスト
- A General Causal Inference Framework for Cross-Sectional Observational Data [0.4972323953932129]
断面観測データに特化して設計された一般因果推論(GCI)フレームワーク。
本稿では,断面観測データを対象としたGCIフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-28T14:26:27Z) - Generalized Criterion for Identifiability of Additive Noise Models Using Majorization [7.448620208767376]
本稿では,有向非巡回グラフ(DAG)モデルに対する新しい識別可能性基準を提案する。
この基準が既存の識別可能性基準を拡張し、一般化することを実証する。
本稿では,変数のトポロジ的順序付けを学習するための新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-08T02:18:57Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - Synergistic eigenanalysis of covariance and Hessian matrices for enhanced binary classification [72.77513633290056]
本稿では, 学習モデルを用いて評価したヘッセン行列をトレーニングセットで評価した共分散行列の固有解析と, 深層学習モデルで評価したヘッセン行列を組み合わせた新しい手法を提案する。
本手法は複雑なパターンと関係を抽出し,分類性能を向上する。
論文 参考訳(メタデータ) (2024-02-14T16:10:42Z) - String Diagrams with Factorized Densities [0.0]
確率的プログラムと因果モデルの両方が、確率変数の集合上の合同確率密度を定義する。
この研究は、確率写像のマルコフ圏の研究に基づいて、射が各サンプル空間上で分解された結合密度と、サンプルから値を返す決定論的写像を結合する圏を定義する。
論文 参考訳(メタデータ) (2023-05-04T02:30:44Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
推移性は潜在因果表現の識別性を阻害する重要な役割を担っている。
いくつかの軽微な仮定の下では、潜伏因果表現が自明な置換とスケーリングまで特定可能であることを示すことができる。
本稿では,その間の因果関係や因果関係を直接学習する構造的caUsAl変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2022-08-30T11:12:59Z) - Bounding Counterfactuals under Selection Bias [60.55840896782637]
本稿では,識別不能なクエリと識別不能なクエリの両方に対処するアルゴリズムを提案する。
選択バイアスによって引き起こされる欠如にもかかわらず、利用可能なデータの可能性は無限であることを示す。
論文 参考訳(メタデータ) (2022-07-26T10:33:10Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
観測データからの因果発見は、正確な解を常に特定できない難しい課題である。
そこで本研究では,変数の性質に基づいた因果関係を制約する仮説を新たに提案する。
論文 参考訳(メタデータ) (2021-07-22T14:23:08Z) - A Unified Joint Maximum Mean Discrepancy for Domain Adaptation [73.44809425486767]
本論文は,最適化が容易なjmmdの統一形式を理論的に導出する。
統合JMMDから、JMMDは分類に有利な特徴ラベル依存を低下させることを示す。
本稿では,その依存を促進する新たなmmd行列を提案し,ラベル分布シフトにロバストな新しいラベルカーネルを考案する。
論文 参考訳(メタデータ) (2021-01-25T09:46:14Z) - Conditional canonical correlation estimation based on covariates with
random forests [0.0]
本研究では,2つの変数間の条件付き正準相関を推定するRFCCAを用いたランダムフォレスト(Random Forest)を提案する。
提案手法と大域的意義試験は,精度の高い正準相関推定とよく制御されたType-1誤差を提供するシミュレーション研究によって評価される。
論文 参考訳(メタデータ) (2020-11-23T17:09:46Z) - Predictive Value Generalization Bounds [27.434419027831044]
本稿では,二項分類の文脈におけるスコアリング関数の評価のためのビクテリオンフレームワークについて検討する。
本研究では,新しい分布自由な大偏差と一様収束境界を導出することにより,予測値に関するスコアリング関数の特性について検討する。
論文 参考訳(メタデータ) (2020-07-09T21:23:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。