論文の概要: PIAT: Physics Informed Adversarial Training for Solving Partial
Differential Equations
- arxiv url: http://arxiv.org/abs/2207.06647v1
- Date: Thu, 14 Jul 2022 03:44:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-16 04:37:53.230820
- Title: PIAT: Physics Informed Adversarial Training for Solving Partial
Differential Equations
- Title(参考訳): PIAT:偏微分方程式を解くための物理インフォームド・アドバイサルトレーニング
- Authors: Simin Shekarpaz, Mohammad Azizmalayeri, Mohammad Hossein Rohban
- Abstract要約: 非線形微分方程式 (NDE) の解法として, ニューラルネットワークの物理情報逆トレーニング (PIAT) を提案する。
我々は、逆ネットワークアーキテクチャにおける自動微分を用いた非線形微分方程式の形で、制御物理法則を符号化する。
PIATとPINNを比較し,最大10次元のNDEの解法の有効性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose the physics informed adversarial training (PIAT) of
neural networks for solving nonlinear differential equations (NDE). It is
well-known that the standard training of neural networks results in non-smooth
functions. Adversarial training (AT) is an established defense mechanism
against adversarial attacks, which could also help in making the solution
smooth. AT include augmenting the training mini-batch with a perturbation that
makes the network output mismatch the desired output adversarially. Unlike
formal AT, which relies only on the training data, here we encode the governing
physical laws in the form of nonlinear differential equations using automatic
differentiation in the adversarial network architecture. We compare PIAT with
PINN to indicate the effectiveness of our method in solving NDEs for up to 10
dimensions. Moreover, we propose weight decay and Gaussian smoothing to
demonstrate the PIAT advantages. The code repository is available at
https://github.com/rohban-lab/PIAT.
- Abstract(参考訳): 本稿では,非線形微分方程式(nde)の解法として,ニューラルネットワークの物理情報学習(piat)を提案する。
ニューラルネットワークの標準的なトレーニングが非スムース機能をもたらすことはよく知られている。
対戦訓練 (AT) は、敵の攻撃に対して確立された防御機構であり、その解決を円滑にするのに役立つ。
ATはトレーニング用ミニバッチを摂動で強化し、ネットワーク出力のミスマッチを好ましくない出力にする。
トレーニングデータのみに依存する形式的atとは異なり、ここでは敵対的ネットワークアーキテクチャにおける自動微分を用いた非線形微分方程式の形で物理法則を符号化する。
PIATとPINNを比較し,最大10次元のNDEの解法の有効性を示す。
さらに, PIATの利点を示すために, 重量減衰とガウス平滑化を提案する。
コードリポジトリはhttps://github.com/rohban-lab/piatで入手できる。
関連論文リスト
- Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
イベントベースの計算を伴うスパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェアにおけるエネルギー効率の高い応用のために、脳にインスパイアされたモデルを約束している。
本研究では,最近提案されたトレーニング手法を拡張した平衡状態(SPIDE)に対するスパイクに基づく暗黙差分法について検討した。
論文 参考訳(メタデータ) (2023-02-01T04:22:59Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
グラフニューラルネットワーク(GNN)とラジアル基底関数有限差分(RBF-FD)に基づく新しいフレームワークを提案する。
RBF-FDはモデルトレーニングを導くために微分方程式の高精度差分形式を構築するために用いられる。
提案アルゴリズムの一般化可能性,精度,効率性を,異なるPDEパラメータで説明する。
論文 参考訳(メタデータ) (2022-12-06T10:08:02Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Certified machine learning: A posteriori error estimation for
physics-informed neural networks [0.0]
PINNは、より小さなトレーニングセットに対して堅牢であることが知られ、より優れた一般化問題を導出し、より高速にトレーニングすることができる。
純粋にデータ駆動型ニューラルネットワークと比較してPINNを使うことは、トレーニング性能に好都合であるだけでなく、近似されたソリューションの品質に関する重要な情報を抽出できることを示す。
論文 参考訳(メタデータ) (2022-03-31T14:23:04Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Inverse-Dirichlet Weighting Enables Reliable Training of Physics
Informed Neural Networks [2.580765958706854]
我々は、深層ニューラルネットワークのトレーニング中に、スケール不均衡を伴うマルチスケールダイナミクスから生じる障害モードを記述し、治療する。
PINNは、物理方程式モデルとデータとのシームレスな統合を可能にする、一般的な機械学習テンプレートである。
逐次トレーニングを用いた逆モデリングでは,逆ディリクレ重み付けがPINNを破滅的忘れから保護することがわかった。
論文 参考訳(メタデータ) (2021-07-02T10:01:37Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks(PINN)は、偏微分方程式(PDE)によって制御されるシステムを計算するために訓練されているディープニューラルネットワークのクラスである。
重要サンプリング手法により,PINN訓練の収束挙動が改善されることが示唆された。
論文 参考訳(メタデータ) (2021-04-26T02:45:10Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Unsupervised Learning of Solutions to Differential Equations with
Generative Adversarial Networks [1.1470070927586016]
本研究では,教師なしニューラルネットワークを用いた微分方程式の解法を開発した。
差分方程式GAN (DEQGAN) と呼ばれる手法は, 平均二乗誤差を桁違いに低減できることを示す。
論文 参考訳(メタデータ) (2020-07-21T23:36:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。