論文の概要: Unsupervised Learning of Solutions to Differential Equations with
Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2007.11133v1
- Date: Tue, 21 Jul 2020 23:36:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 04:22:26.517644
- Title: Unsupervised Learning of Solutions to Differential Equations with
Generative Adversarial Networks
- Title(参考訳): 生成逆ネットワークを持つ微分方程式解の教師なし学習
- Authors: Dylan Randle, Pavlos Protopapas, David Sondak
- Abstract要約: 本研究では,教師なしニューラルネットワークを用いた微分方程式の解法を開発した。
差分方程式GAN (DEQGAN) と呼ばれる手法は, 平均二乗誤差を桁違いに低減できることを示す。
- 参考スコア(独自算出の注目度): 1.1470070927586016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solutions to differential equations are of significant scientific and
engineering relevance. Recently, there has been a growing interest in solving
differential equations with neural networks. This work develops a novel method
for solving differential equations with unsupervised neural networks that
applies Generative Adversarial Networks (GANs) to \emph{learn the loss
function} for optimizing the neural network. We present empirical results
showing that our method, which we call Differential Equation GAN (DEQGAN), can
obtain multiple orders of magnitude lower mean squared errors than an
alternative unsupervised neural network method based on (squared) $L_2$, $L_1$,
and Huber loss functions. Moreover, we show that DEQGAN achieves solution
accuracy that is competitive with traditional numerical methods. Finally, we
analyze the stability of our approach and find it to be sensitive to the
selection of hyperparameters, which we provide in the appendix.
Code available at https://github.com/dylanrandle/denn. Please address any
electronic correspondence to dylanrandle@alumni.harvard.edu.
- Abstract(参考訳): 微分方程式の解は、科学的および工学的関連性が重要である。
近年,ニューラルネットワークを用いた微分方程式の解法への関心が高まっている。
本研究では, ニューラルネットワークの最適化のために, 生成逆ニューラルネットワーク(gans)を適用した非教師付きニューラルネットワークを用いた微分方程式の解法を開発した。
我々は,微分方程式GAN (DEQGAN) と呼ばれる手法を用いて,(2乗)$L_2$,$L_1$,およびHuber損失関数をベースとした,代替的な教師なしニューラルネットワーク法に比べて,平均2乗誤差を桁違いに低減できることを示す実験結果を示した。
さらに,DECGANは従来の数値法と競合する解の精度を実現する。
最後に,我々のアプローチの安定性を分析し,虫垂で提示するハイパーパラメータの選択に敏感であることを見出した。
コードはhttps://github.com/dylanrandle/denn。
dylanrandle@alumni.harvard.eduへの電子通信をどうぞ。
関連論文リスト
- LinSATNet: The Positive Linear Satisfiability Neural Networks [116.65291739666303]
本稿では,ニューラルネットワークに人気の高い正の線形満足度を導入する方法について検討する。
本稿では,古典的なシンクホーンアルゴリズムを拡張し,複数の辺分布の集合を共同で符号化する,最初の微分可能満足層を提案する。
論文 参考訳(メタデータ) (2024-07-18T22:05:21Z) - Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
この研究は、フィードフォワードニューラルネットワークモデルとエラーバックプロパゲーション原理を用いて、損失関数の計算に自動微分(AD)を利用する。
楕円偏微分方程式を用いて,CSNNモデルの数値効率と精度について検討し,よく知られた物理インフォームドニューラルネットワーク(PINN)法と比較した。
論文 参考訳(メタデータ) (2024-06-06T05:31:45Z) - DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial
Networks [1.0499611180329804]
本研究は、生成逆数ネットワークを用いた微分方程式の解法である微分方程式GAN(DEQGAN)を提案する。
DeQGAN は PINN よりも 平均二乗誤差が桁違いに小さくなることを示す。
また、DECGANは、一般的な数値法と競合する解の精度を達成できることを示す。
論文 参考訳(メタデータ) (2022-09-15T06:39:47Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
本研究では,ソルバ空間の変動がニューラルODEの性能を向上する方法について検討する。
解法パラメータ化の正しい選択は, 敵の攻撃に対するロバスト性の観点から, 神経odesモデルに大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2021-03-15T17:26:34Z) - Computational characteristics of feedforward neural networks for solving
a stiff differential equation [0.0]
減衰系をモデル化する単純だが基本的な常微分方程式の解について検討する。
パラメータやメソッドに対して好適な選択を特定できることを示す。
全体として、ニューラルネットワークアプローチによる信頼性と正確な結果を得るために何ができるかを示すことで、この分野の現在の文献を拡張します。
論文 参考訳(メタデータ) (2020-12-03T12:22:24Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - ODEN: A Framework to Solve Ordinary Differential Equations using
Artificial Neural Networks [0.0]
我々は、ニューラルネットワークの性能を評価するために、正確な解の知識を必要としない特定の損失関数を証明した。
ニューラルネットワークは、トレーニング領域内での継続的ソリューションの近似に熟練していることが示されている。
ユーザフレンドリで適応可能なオープンソースコード(ODE$mathcalN$)がGitHubで提供されている。
論文 参考訳(メタデータ) (2020-05-28T15:34:10Z) - A Derivative-Free Method for Solving Elliptic Partial Differential
Equations with Deep Neural Networks [2.578242050187029]
楕円型偏微分方程式のクラスを解くためのディープニューラルネットワークに基づく手法を提案する。
我々は、PDEの確率的表現の指導の下で訓練されたディープニューラルネットワークを用いて、PDEの解を近似する。
ブラウンのウォーカーがドメインを探索するにつれ、ディープニューラルネットワークは強化学習の形式で反復的に訓練される。
論文 参考訳(メタデータ) (2020-01-17T03:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。