論文の概要: RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network
- arxiv url: http://arxiv.org/abs/2212.02861v1
- Date: Tue, 6 Dec 2022 10:08:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 17:25:26.019703
- Title: RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network
- Title(参考訳): RBF-MGN:物理インフォームドグラフニューラルネットワークを用いた時空間PDEのソルビング
- Authors: Zixue Xiang, Wei Peng, Wen Yao
- Abstract要約: グラフニューラルネットワーク(GNN)とラジアル基底関数有限差分(RBF-FD)に基づく新しいフレームワークを提案する。
RBF-FDはモデルトレーニングを導くために微分方程式の高精度差分形式を構築するために用いられる。
提案アルゴリズムの一般化可能性,精度,効率性を,異なるPDEパラメータで説明する。
- 参考スコア(独自算出の注目度): 4.425915683879297
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) have lately received significant
attention as a representative deep learning-based technique for solving partial
differential equations (PDEs). Most fully connected network-based PINNs use
automatic differentiation to construct loss functions that suffer from slow
convergence and difficult boundary enforcement. In addition, although
convolutional neural network (CNN)-based PINNs can significantly improve
training efficiency, CNNs have difficulty in dealing with irregular geometries
with unstructured meshes. Therefore, we propose a novel framework based on
graph neural networks (GNNs) and radial basis function finite difference
(RBF-FD). We introduce GNNs into physics-informed learning to better handle
irregular domains with unstructured meshes. RBF-FD is used to construct a
high-precision difference format of the differential equations to guide model
training. Finally, we perform numerical experiments on Poisson and wave
equations on irregular domains. We illustrate the generalizability, accuracy,
and efficiency of the proposed algorithms on different PDE parameters, numbers
of collection points, and several types of RBFs.
- Abstract(参考訳): 近年,偏微分方程式(PDE)の解法として,物理情報ニューラルネットワーク(PINN)が注目されている。
ほとんどの完全連結ネットワークベースPINNは、収束が遅く、境界の強制が難しい損失関数を構築するために自動微分を使用する。
さらに、畳み込みニューラルネットワーク(CNN)ベースのPINNは、トレーニング効率を大幅に改善するが、CNNは非構造化メッシュによる不規則なジオメトリを扱うのが困難である。
そこで我々は,グラフニューラルネットワーク(GNN)と放射基底関数有限差(RBF-FD)に基づく新しいフレームワークを提案する。
物理インフォームドラーニングにGNNを導入し、非構造化メッシュによる不規則領域の処理を改善する。
RBF-FDはモデルトレーニングを導くために微分方程式の高精度差分形式を構築するために用いられる。
最後に不規則領域上のポアソン方程式と波動方程式の数値実験を行う。
提案アルゴリズムの一般化可能性,精度,効率性を,異なるPDEパラメータ,収集点数,RBFの種類によって説明する。
関連論文リスト
- DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - PhyGNNet: Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [12.385926494640932]
本稿では,グラフニューラルネットワークの基本値から偏微分方程式を解くためのPhyGNNetを提案する。
特に、計算領域を正規グリッドに分割し、グリッド上の偏微分演算子を定義し、PhyGNNetモデルを構築する最適化のためにネットワークのpde損失を構築する。
論文 参考訳(メタデータ) (2022-08-07T13:33:34Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
我々は,PDEのリー対称性によって誘導される不変表面条件をPINNの損失関数に組み込む,新しい対称性を持つ物理情報ニューラルネットワーク(SPINN)を提案する。
SPINNは、トレーニングポイントが少なく、ニューラルネットワークのよりシンプルなアーキテクチャで、PINNよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-06-19T00:44:22Z) - Scientific Machine Learning through Physics-Informed Neural Networks:
Where we are and What's next [5.956366179544257]
physic-Informed Neural Networks (PINN) は、モデル方程式を符号化するニューラルネットワーク(NN)である。
PINNは現在ではPDE、分数方程式、積分微分方程式の解法として使われている。
論文 参考訳(メタデータ) (2022-01-14T19:05:44Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - GrADE: A graph based data-driven solver for time-dependent nonlinear
partial differential equations [0.0]
本稿では,時間依存非線形PDEを解くためのグラフ注意微分方程式(GrADE)を提案する。
提案するアプローチは、FNN、グラフニューラルネットワークと、最近開発されたNeural ODEフレームワークを結合する。
その結果、PDEのモデリングにおける提案フレームワークの能力と、再トレーニングを必要とせず、より大きなドメインへの拡張性を示した。
論文 参考訳(メタデータ) (2021-08-24T10:49:03Z) - Physics-informed attention-based neural network for solving non-linear
partial differential equations [6.103365780339364]
物理情報ニューラルネットワーク(PINN)は、物理プロセスのモデリングにおいて大幅な改善を実現しました。
PINNは単純なアーキテクチャに基づいており、ネットワークパラメータを最適化することで複雑な物理システムの振る舞いを学習し、基礎となるPDEの残余を最小限に抑える。
ここでは、非線形PDEの複雑な振る舞いを学ぶのに、どのネットワークアーキテクチャが最適かという問題に対処する。
論文 参考訳(メタデータ) (2021-05-17T14:29:08Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。