論文の概要: Instance Selection Mechanisms for Human-in-the-Loop Systems in Few-Shot
Learning
- arxiv url: http://arxiv.org/abs/2207.06835v1
- Date: Thu, 14 Jul 2022 11:45:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-15 14:11:51.302255
- Title: Instance Selection Mechanisms for Human-in-the-Loop Systems in Few-Shot
Learning
- Title(参考訳): Few-Shot LearningにおけるHuman-in-the-Loopシステムの選択機構
- Authors: Johannes Jakubik, Benedikt Blumenstiel, Michael V\"ossing, Patrick
Hemmer
- Abstract要約: ラベル付きデータをほとんど持たない新しいクラスを学習することで、データ収集とラベル付けのコストに対処する。
人的知識の獲得は,少数ショットモデルの性能を著しく向上させることを示す。
コンピュータビジョンと実世界のデータセットのベンチマークデータセットを用いて,様々な実験で得られた知見を検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Business analytics and machine learning have become essential success factors
for various industries - with the downside of cost-intensive gathering and
labeling of data. Few-shot learning addresses this challenge and reduces data
gathering and labeling costs by learning novel classes with very few labeled
data. In this paper, we design a human-in-the-loop (HITL) system for few-shot
learning and analyze an extensive range of mechanisms that can be used to
acquire human expert knowledge for instances that have an uncertain prediction
outcome. We show that the acquisition of human expert knowledge significantly
accelerates the few-shot model performance given a negligible labeling effort.
We validate our findings in various experiments on a benchmark dataset in
computer vision and real-world datasets. We further demonstrate the
cost-effectiveness of HITL systems for few-shot learning. Overall, our work
aims at supporting researchers and practitioners in effectively adapting
machine learning models to novel classes at reduced costs.
- Abstract(参考訳): ビジネス分析と機械学習は、コスト集約的なデータ収集とラベル付けのマイナス面とともに、さまざまな業界にとって重要な成功要因になっています。
この課題に対処し、ラベル付きデータの少ない新しいクラスを学習することで、データ収集とラベル付けのコストを削減する。
本稿では,複数発の学習のためのHuman-in-the-loop(HITL)システムを設計し,不確実な予測結果を持つ事例に対する人間の専門知識獲得に使用できる幅広いメカニズムを解析する。
人間の専門知識の獲得は,無意味なラベリング努力により,少数のモデルのパフォーマンスを著しく向上させることが示された。
我々は,コンピュータビジョンと実世界のデータセットのベンチマークデータセットを用いて,様々な実験を行った。
さらに, HITLシステムの費用対効果を, 数発の学習で実証する。
本研究は,機械学習モデルを新しいクラスに効果的に適応する上で,研究者や実践者を支援することを目的としている。
関連論文リスト
- KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [75.78948575957081]
大規模言語モデル(LLM)は通常、知識材料を瞬時に活用するために、検索強化世代に依存している。
本稿では,知識ベースを含む下流タスクへの効率的な適応を目的としたKBAlignを提案する。
提案手法は,Q&Aペアやリビジョン提案などの自己注釈付きデータを用いて反復学習を行い,モデルが知識内容を効率的に把握できるようにする。
論文 参考訳(メタデータ) (2024-11-22T08:21:03Z) - Towards Understanding the Feasibility of Machine Unlearning [14.177012256360635]
未学習の難易度を定量化するための新しい指標のセットを提案する。
具体的には,学習を成功させるのに必要な条件を評価するために,いくつかの指標を提案する。
また、最も難解なサンプルを特定するためのランキング機構も提示する。
論文 参考訳(メタデータ) (2024-10-03T23:41:42Z) - A Survey of the Self Supervised Learning Mechanisms for Vision Transformers [5.152455218955949]
視覚タスクにおける自己教師あり学習(SSL)の適用は注目されている。
SSL手法を体系的に分類する包括的分類法を開発した。
SSLの背後にあるモチベーションについて議論し、人気のある事前トレーニングタスクをレビューし、この分野の課題と進歩を強調します。
論文 参考訳(メタデータ) (2024-08-30T07:38:28Z) - Cheap Learning: Maximising Performance of Language Models for Social
Data Science Using Minimal Data [1.8692054990918079]
近年発展してきた3つの安価な技術について概観する。
後者では、大規模言語モデルのゼロショットプロンプトの特定の事例について概観する。
我々は,すべての技術に対して優れた性能を示し,特に大規模言語モデルのプロンプトが,非常に低コストで高い精度を達成できることを示す。
論文 参考訳(メタデータ) (2024-01-22T19:00:11Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
本稿では,人間の認知過程をシミュレートするために強化学習フレームワークを用いる。
また,マルチモーダル情報から特徴を抽出・融合するマルチエージェントフレームワークをデプロイした。
我々は、OS-MN40、OS-MN40-Miss、Cifar10データセットを用いて、3Dドメインと2Dドメインの両方でのアプローチの性能を示す。
論文 参考訳(メタデータ) (2023-08-26T07:55:32Z) - Ecosystem-level Analysis of Deployed Machine Learning Reveals Homogeneous Outcomes [72.13373216644021]
本研究では,機械学習の社会的影響を,特定の文脈に展開されるモデルの集合を考慮し検討する。
デプロイされた機械学習はシステム障害を起こしやすいため、利用可能なすべてのモデルに排他的に誤分類されているユーザもいます。
これらの例は、エコシステムレベルの分析が、機械学習の社会的影響を特徴づける独自の強みを持っていることを示している。
論文 参考訳(メタデータ) (2023-07-12T01:11:52Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - INTERN: A New Learning Paradigm Towards General Vision [117.3343347061931]
我々はInterNという新しい学習パラダイムを開発した。
複数の段階の複数のソースからの監視信号を用いて学習することにより、トレーニング対象のモデルは強力な一般化性を生み出す。
ほとんどの場合、ターゲットドメインのトレーニングデータの10%しか適応していないモデルが、完全なデータセットでトレーニングされたトレーニングデータよりも優れています。
論文 参考訳(メタデータ) (2021-11-16T18:42:50Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
本稿では,少数のトレーニング画像にのみ手動アノテーションを応用して,効果的なサルエント物体検出モデルを学習することを提案する。
我々は,このタスクを,少額の有能な物体検出とみなし,少数のコストの学習シナリオを促進するために,APL(Adversarialpaced Learning)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-05T14:15:49Z) - Automatic Feasibility Study via Data Quality Analysis for ML: A
Case-Study on Label Noise [21.491392581672198]
我々はSnoopyを紹介し、データサイエンティストと機械学習エンジニアが体系的で理論的に確立された実現可能性研究を行うのを支援することを目的としている。
我々は、基礎となるタスクの既約誤差を推定し、この問題にアプローチする。
エンド・ツー・エンドの実験では、ユーザーがかなりのラベリング時間と金銭的努力を節約できることを示す。
論文 参考訳(メタデータ) (2020-10-16T14:21:19Z) - Principles and Practice of Explainable Machine Learning [12.47276164048813]
本稿では、特に機械学習(ML)とパターン認識モデルに関するデータ駆動手法に焦点を当てる。
メソッドの頻度と複雑さが増すにつれて、少なくともビジネスの利害関係者はモデルの欠点に懸念を抱いている。
我々は、業界実践者が説明可能な機械学習の分野をよりよく理解するための調査を実施した。
論文 参考訳(メタデータ) (2020-09-18T14:50:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。