論文の概要: Online Inference for Mixture Model of Streaming Graph Signals with
Non-White Excitation
- arxiv url: http://arxiv.org/abs/2207.14019v1
- Date: Thu, 28 Jul 2022 11:25:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-29 12:52:06.148531
- Title: Online Inference for Mixture Model of Streaming Graph Signals with
Non-White Excitation
- Title(参考訳): 非白色励起を伴うストリーミンググラフ信号の混合モデルのオンライン推論
- Authors: Yiran He, Hoi-To Wai
- Abstract要約: フィルタされた低域通過グラフ信号と、おそらく非白色および低ランクの励起の混合モデルについて検討する。
本稿では,グラフのノード中心性に着目した推論問題を考える。
本稿では,ストリーミングデータからの推論のための新しいオンラインEMアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 34.30390182564043
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers a joint multi-graph inference and clustering problem for
simultaneous inference of node centrality and association of graph signals with
their graphs. We study a mixture model of filtered low pass graph signals with
possibly non-white and low-rank excitation. While the mixture model is
motivated from practical scenarios, it presents significant challenges to prior
graph learning methods. As a remedy, we consider an inference problem focusing
on the node centrality of graphs. We design an expectation-maximization (EM)
algorithm with a unique low-rank plus sparse prior derived from low pass signal
property. We propose a novel online EM algorithm for inference from streaming
data. As an example, we extend the online algorithm to detect if the signals
are generated from an abnormal graph. We show that the proposed algorithms
converge to a stationary point of the maximum-a-posterior (MAP) problem.
Numerical experiments support our analysis.
- Abstract(参考訳): 本稿では,ノードの集中度とグラフ信号の関連付けを同時に行うためのマルチグラフ推論とクラスタリングの問題について考察する。
フィルタ付き低域通過グラフ信号と非白・低域励起の混合モデルについて検討した。
混合モデルは実践的なシナリオから動機づけられるが,従来のグラフ学習手法には大きな課題がある。
修正として,グラフのノード中心性に着目した推論問題を考える。
低域信号特性から導出される独自の低ランクプラススパースを持つ予測最大化(EM)アルゴリズムを設計する。
ストリーミングデータから推定するオンラインemアルゴリズムを提案する。
例えば、異常グラフから信号が生成されるかどうかを検出するために、オンラインアルゴリズムを拡張します。
提案アルゴリズムは最大後続問題(MAP)の定常点に収束することを示す。
数値実験が我々の分析を支えている。
関連論文リスト
- Online Network Inference from Graph-Stationary Signals with Hidden Nodes [31.927912288598467]
本稿では,隠れノードの存在を考慮したオンライングラフ推定手法を提案する。
次に、ストリーミング不完全グラフ信号からのグラフ学習のための凸最適化問題を定式化する。
論文 参考訳(メタデータ) (2024-09-13T12:09:09Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Homophily-Related: Adaptive Hybrid Graph Filter for Multi-View Graph
Clustering [29.17784041837907]
マルチビューグラフクラスタリング(AHGFC)のための適応ハイブリッドグラフフィルタを提案する。
AHGFCはグラフ結合集約行列に基づいてノード埋め込みを学習する。
実験結果から,同好性グラフと異好性グラフを含む6つのデータセットに対して,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2024-01-05T07:27:29Z) - Graphon based Clustering and Testing of Networks: Algorithms and Theory [11.3700474413248]
ネットワークに価値のあるデータは、幅広いアプリケーションで遭遇し、学習の課題を提起する。
本稿では,2つのクラスタリングアルゴリズムについて述べる。
さらに、グラフ2サンプルテスト問題に対する提案した距離の適用性について検討する。
論文 参考訳(メタデータ) (2021-10-06T13:14:44Z) - Learning Graphs from Smooth Signals under Moment Uncertainty [23.868075779606425]
与えられたグラフ信号の集合からグラフ構造を推測する問題を検討する。
従来のグラフ学習モデルは、この分布の不確実性を考慮していない。
論文 参考訳(メタデータ) (2021-05-12T06:47:34Z) - Multilayer Graph Clustering with Optimized Node Embedding [70.1053472751897]
多層グラフクラスタリングは、グラフノードをカテゴリまたはコミュニティに分割することを目指しています。
与えられた多層グラフの層をクラスタリングに親しみやすい埋め込みを提案する。
実験の結果,本手法は著しい改善をもたらすことがわかった。
論文 参考訳(メタデータ) (2021-03-30T17:36:40Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Unrolling of Deep Graph Total Variation for Image Denoising [106.93258903150702]
本稿では,従来のグラフ信号フィルタリングと深い特徴学習を併用して,競合するハイブリッド設計を提案する。
解釈可能な低パスグラフフィルタを用い、最先端のDL復調方式DnCNNよりも80%少ないネットワークパラメータを用いる。
論文 参考訳(メタデータ) (2020-10-21T20:04:22Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Wasserstein-based Graph Alignment [56.84964475441094]
我々は,より小さいグラフのノードと大きなグラフのノードをマッチングすることを目的とした,1対多のグラフアライメント問題に対する新しい定式化を行った。
提案手法は,各タスクに対する最先端のアルゴリズムに対して,大幅な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2020-03-12T22:31:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。