論文の概要: Unifying physical systems' inductive biases in neural ODE using dynamics
constraints
- arxiv url: http://arxiv.org/abs/2208.02632v1
- Date: Wed, 3 Aug 2022 14:33:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-05 12:51:45.573886
- Title: Unifying physical systems' inductive biases in neural ODE using dynamics
constraints
- Title(参考訳): 動的制約を用いたニューラルODEにおける物理系の誘導バイアスの統一
- Authors: Yi Heng Lim, Muhammad Firmansyah Kasim
- Abstract要約: 省エネシステムだけでなく、散逸システムにも適用可能な簡単な方法を提案する。
提案手法はニューラルネットワークアーキテクチャの変更を必要とせず,新しいアイデアを検証するための基盤を形成することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conservation of energy is at the core of many physical phenomena and
dynamical systems. There have been a significant number of works in the past
few years aimed at predicting the trajectory of motion of dynamical systems
using neural networks while adhering to the law of conservation of energy. Most
of these works are inspired by classical mechanics such as Hamiltonian and
Lagrangian mechanics as well as Neural Ordinary Differential Equations. While
these works have been shown to work well in specific domains respectively,
there is a lack of a unifying method that is more generally applicable without
requiring significant changes to the neural network architectures. In this
work, we aim to address this issue by providing a simple method that could be
applied to not just energy-conserving systems, but also dissipative systems, by
including a different inductive bias in different cases in the form of a
regularisation term in the loss function. The proposed method does not require
changing the neural network architecture and could form the basis to validate a
novel idea, therefore showing promises to accelerate research in this
direction.
- Abstract(参考訳): エネルギーの保存は多くの物理現象と力学系の核心にある。
エネルギーの保存の法則に固執しつつ、ニューラルネットワークを用いて力学系の運動の軌跡を予測することを目的として、ここ数年でかなりの数の研究がなされている。
これらの作品の多くは、ハミルトン力学やラグランジュ力学やニューラル正規微分方程式のような古典力学に触発されている。
これらの研究は、それぞれ特定の領域でうまく機能することが示されているが、ニューラルネットワークアーキテクチャに大きな変更を加えることなく、より一般的に適用できる統一メソッドが欠如している。
本研究では, エネルギー保存システムだけでなく, 散逸システムにも適用可能な簡易な方法を提供し, 損失関数の正規化項という形で, 異なるケースにおける異なる帰納的バイアスを組み込むことによって, この問題に対処することを目的とする。
提案手法では、ニューラルネットワークアーキテクチャを変更する必要はなく、新しいアイデアを検証する基礎を形成することができるため、この方向の研究を加速する公約を示すことができる。
関連論文リスト
- TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems [43.39754726042369]
連続グラフニューラルネットワークに基づく常微分方程式(GraphODE)により予測される前後の軌跡を整列するソフト制約として,単純かつ効果的な自己監督型正規化項を提案する。
時間反転対称性を効果的に課し、古典力学の下でより広い範囲の力学系にわたってより正確なモデル予測を可能にする。
様々な物理システムに対する実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-10-10T08:52:16Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Gradient-Enhanced Physics-Informed Neural Networks for Power Systems
Operational Support [36.96271320953622]
本稿では,電力系統の動的挙動をリアルタイムに近似する機械学習手法を提案する。
提案するフレームワークは、勾配強化された物理インフォームドニューラルネットワーク(gPINN)に基づいて、電力システムを管理する基礎となる物理法則を符号化する。
論文 参考訳(メタデータ) (2022-06-21T17:56:55Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
量子系の外部自由度への不可避結合は、散逸(非単体)ダイナミクスをもたらす。
本稿では,グリーン関数の(散逸的な)格子計算に基づいて,これらのシステムに対処する手法を提案する。
本手法のパワーを,複雑性を増大させる駆動散逸型ボゾン鎖のいくつかの例で説明する。
論文 参考訳(メタデータ) (2022-02-15T19:00:09Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent
Dynamical Systems [2.6084034060847894]
動的システムの時間的挙動を正確に学習するには、十分な学習バイアスを持つモデルが必要である。
近年のイノベーションは、ハミルトン形式とラグランジュ形式をニューラルネットワークに組み込んでいる。
提案したエンポート・ハミルトンニューラルネットワークは,非線形物理系の実利的な力学を効率的に学習できることを示す。
論文 参考訳(メタデータ) (2021-07-16T17:31:54Z) - Forced Variational Integrator Networks for Prediction and Control of
Mechanical Systems [7.538482310185133]
強制的変動積分器ネットワーク(FVIN)アーキテクチャにより,エネルギー散逸と外部強制を正確に考慮できることを示す。
これにより、高データ効率のモデルベース制御が可能となり、実際の非保守的なシステムで予測できる。
論文 参考訳(メタデータ) (2021-06-05T21:39:09Z) - Approximation Bounds for Random Neural Networks and Reservoir Systems [8.143750358586072]
本研究は、ランダムに生成された内部重みを持つ単層フィードフォワードおよび繰り返しニューラルネットワークに基づく近似について研究する。
特に、ランダムに生成された重みを持つエコー状態ネットワークは、広い種類の力学系を任意に近似することができることを証明している。
論文 参考訳(メタデータ) (2020-02-14T09:43:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。