論文の概要: Meaning without reference in large language models
- arxiv url: http://arxiv.org/abs/2208.02957v1
- Date: Fri, 5 Aug 2022 02:48:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-08 12:13:15.647895
- Title: Meaning without reference in large language models
- Title(参考訳): 大言語モデルにおける参照なしの意味
- Authors: Steven T. Piantasodi and Felix Hill
- Abstract要約: 我々は、大きな言語モデル(LLM)が意味の重要な側面を捉えているのではないかと論じている。
概念的役割は、内部表現状態間の関係によって定義されるので、意味はモデルのアーキテクチャから決定できない。
- 参考スコア(独自算出の注目度): 14.26628686684198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread success of large language models (LLMs) has been met with
skepticism that they possess anything like human concepts or meanings. Contrary
to claims that LLMs possess no meaning whatsoever, we argue that they likely
capture important aspects of meaning, and moreover work in a way that
approximates a compelling account of human cognition in which meaning arises
from conceptual role. Because conceptual role is defined by the relationships
between internal representational states, meaning cannot be determined from a
model's architecture, training data, or objective function, but only by
examination of how its internal states relate to each other. This approach may
clarify why and how LLMs are so successful and suggest how they can be made
more human-like.
- Abstract(参考訳): 大きな言語モデル(LLM)の成功は、それらが人間の概念や意味のようなものを持っていることに懐疑的だ。
LLMには何の意味も持たないという主張とは対照的に、意味の重要な側面を捉えている可能性があり、その上、意味が概念的な役割から生じる人間の認知の説得力のある説明を近似する作業を行っている。
概念的な役割は内部表現状態間の関係によって定義されるため、意味はモデルのアーキテクチャ、トレーニングデータ、客観的関数から決定することはできないが、内部状態が相互にどう関係しているかを調べることによってのみ決定される。
このアプローチは、LCMがなぜ、どのように成功しているかを明確にし、どのようにしてより人間らしくできるかを示唆する。
関連論文リスト
- Non-literal Understanding of Number Words by Language Models [33.24263583093367]
人間は自然に、文脈、世界知識、話者意図を組み合わせた、意味のない数字を解釈する。
大規模言語モデル (LLM) も同様に数字を解釈し, ハイパボラ効果と実効ハロ効果に着目した。
論文 参考訳(メタデータ) (2025-02-10T07:03:00Z) - Human-like conceptual representations emerge from language prediction [72.5875173689788]
大型言語モデル(LLM)における人間に似た概念表現の出現について検討した。
その結果、LLMは定義記述から概念を推論し、共有された文脈に依存しない構造に収束する表現空間を構築することができた。
我々の研究は、LLMが複雑な人間の認知を理解するための貴重なツールであり、人工知能と人間の知能の整合性を高めるための道を開くという見解を支持している。
論文 参考訳(メタデータ) (2025-01-21T23:54:17Z) - Representation in large language models [0.0]
大規模言語モデルの振る舞いは、部分的に表現に基づく情報処理によって引き起こされていると私は主張する。
これらの表現を調査し、説明を開発するためのテクニックについて説明する。
論文 参考訳(メタデータ) (2025-01-01T16:19:48Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
本稿では, LLMのイデオロギー的姿勢が創造者の世界観を反映していることを示す。
論文 参考訳(メタデータ) (2024-10-24T04:02:30Z) - Large Models of What? Mistaking Engineering Achievements for Human Linguistic Agency [0.11510009152620666]
我々は,Large Language Models(LLM)の言語能力に関する主張は,少なくとも2つの根拠のない仮定に基づいていると主張している。
言語完全性は、自然言語のような明瞭で完全なものが存在すると仮定する。
データ完全性の仮定は、言語がデータによって定量化され、完全にキャプチャされるという信念に依存している。
論文 参考訳(メタデータ) (2024-07-11T18:06:01Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Towards Concept-Aware Large Language Models [56.48016300758356]
概念は、学習、推論、コミュニケーションなど、様々な人間の認知機能において重要な役割を果たす。
概念を形作り、推論する能力を持つ機械を授けることは、ほとんどない。
本研究では,現代における大規模言語モデル(LLM)が,人間の概念とその構造をどのように捉えているかを分析する。
論文 参考訳(メタデータ) (2023-11-03T12:19:22Z) - The Neuro-Symbolic Inverse Planning Engine (NIPE): Modeling
Probabilistic Social Inferences from Linguistic Inputs [50.32802502923367]
確率的目標推論領域における言語駆動の過程と社会的推論への影響について検討する。
本稿では,エージェントシナリオの言語入力から目標推定を行うニューロシンボリックモデルを提案する。
我々のモデルは人間の反応パターンと密に一致し、LLM単独の使用よりも人間の判断をより良く予測する。
論文 参考訳(メタデータ) (2023-06-25T19:38:01Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
大規模言語モデル(LLM)は、近年、自然言語と機械学習コミュニティを興奮させています。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンのテクストセマンティクスが推論過程において最も重い処理を行うと仮定する。
論文 参考訳(メタデータ) (2023-05-24T07:33:34Z) - The Goldilocks of Pragmatic Understanding: Fine-Tuning Strategy Matters
for Implicature Resolution by LLMs [26.118193748582197]
我々は、広く使われている最先端モデルの4つのカテゴリを評価する。
2進推論を必要とする発話のみを評価するにもかかわらず、3つのカテゴリのモデルはランダムに近い性能を示す。
これらの結果は、特定の微調整戦略がモデルにおける実用的理解を誘導する上ではるかに優れていることを示唆している。
論文 参考訳(メタデータ) (2022-10-26T19:04:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。