論文の概要: Mining Legal Arguments in Court Decisions
- arxiv url: http://arxiv.org/abs/2208.06178v1
- Date: Fri, 12 Aug 2022 08:59:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-15 13:17:04.406742
- Title: Mining Legal Arguments in Court Decisions
- Title(参考訳): 裁判所決定における法的議論のマイニング
- Authors: Ivan Habernal, Daniel Faber, Nicola Recchia, Sebastian Bretthauer,
Iryna Gurevych, Indra Spiecker genannt D\"ohmann, Christoph Burchard
- Abstract要約: 我々は,欧州人権裁判所の手続において,法的議論のための新たな注釈体系を開発する。
第2に、373の判決の大規模なコーパスをコンパイルし、注釈を付ける。
第三に、法的なNLPドメインにおける最先端モデルよりも優れた引数マイニングモデルを訓練する。
- 参考スコア(独自算出の注目度): 43.09204050756282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying, classifying, and analyzing arguments in legal discourse has been
a prominent area of research since the inception of the argument mining field.
However, there has been a major discrepancy between the way natural language
processing (NLP) researchers model and annotate arguments in court decisions
and the way legal experts understand and analyze legal argumentation. While
computational approaches typically simplify arguments into generic premises and
claims, arguments in legal research usually exhibit a rich typology that is
important for gaining insights into the particular case and applications of law
in general. We address this problem and make several substantial contributions
to move the field forward. First, we design a new annotation scheme for legal
arguments in proceedings of the European Court of Human Rights (ECHR) that is
deeply rooted in the theory and practice of legal argumentation research.
Second, we compile and annotate a large corpus of 373 court decisions (2.3M
tokens and 15k annotated argument spans). Finally, we train an argument mining
model that outperforms state-of-the-art models in the legal NLP domain and
provide a thorough expert-based evaluation. All datasets and source codes are
available under open lincenses at
https://github.com/trusthlt/mining-legal-arguments.
- Abstract(参考訳): 法的談話における議論の同定、分類、分析は、議論採掘分野の開始以来、顕著な研究分野であった。
しかしながら、自然言語処理(NLP)研究者は、裁判所の決定における議論のモデル化と注釈付けの方法と、法の専門家が法的議論を理解し分析する方法との間に大きな違いがある。
計算的アプローチは一般的に一般的な前提や主張に対する議論を単純化するが、法律研究における議論は、典型的には、特定の場合や一般法の適用に関する洞察を得るために重要なリッチな類型論を示す。
この問題に対処し、フィールドを前進させるためにいくつかの重要な貢献をする。
まず,欧州人権裁判所(ECHR)の手続における法的議論のための新たな注釈体系を設計し,法的議論研究の理論と実践に深く根ざしている。
第二に、373の判決(トークン2.3Mと15kの注釈付き引数)の大きなコーパスをコンパイルし、注釈付けします。
最後に、法的なnlpドメインにおける最先端モデルを上回る議論マイニングモデルを訓練し、専門家による徹底的な評価を提供する。
すべてのデータセットとソースコードは、open lincensesのhttps://github.com/trusthlt/mining-legal-argumentsで入手できる。
関連論文リスト
- DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Towards Explainability in Legal Outcome Prediction Models [64.00172507827499]
我々は、前例が法的NLPモデルの説明可能性を促進する自然な方法であると主張している。
法的な先例の分類法を開発することで、人間の判断と神経モデルを比較することができる。
モデルが合理的に結果を予測することを学習する一方で、前例の使用は人間の判断とは違い、ということがわかりました。
論文 参考訳(メタデータ) (2024-03-25T15:15:41Z) - LLM vs. Lawyers: Identifying a Subset of Summary Judgments in a Large UK
Case Law Dataset [0.0]
本研究は, 英国裁判所判決の大規模コーパスから, 判例, 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、
我々は、ケンブリッジ法コーパス356,011英国の裁判所決定を用いて、大きな言語モデルは、キーワードに対して重み付けされたF1スコアが0.94対0.78であると判断する。
我々は,3,102件の要約判断事例を同定し抽出し,その分布を時間的範囲の様々な英国裁判所にマップできるようにする。
論文 参考訳(メタデータ) (2024-03-04T10:13:30Z) - A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
Inductive Logic Programmingアプローチを用いて、抽象的および構造化された議論フレームワークのアクセシビリティセマンティクスを解釈可能な方法で学習する新しいフレームワークを提案する。
提案手法は既存の議論解法よりも優れており,フォーマルな議論や人間と機械の対話の領域において,新たな研究の方向性が開けることになる。
論文 参考訳(メタデータ) (2023-10-18T20:18:05Z) - Automated Argument Generation from Legal Facts [6.057773749499076]
法律体系に提出される事件の数は、ある国の法律専門家の数よりもはるかに多い。
本研究では,訴訟分析の過程において,法的専門家を支援することに焦点を当てた。
実験結果から,ベストパフォーマンスメソッドから生成された引数は,ベンチマークセットのゴールド標準アノテーションと平均63%の重なりを持つことがわかった。
論文 参考訳(メタデータ) (2023-10-09T12:49:35Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - The Legal Argument Reasoning Task in Civil Procedure [2.079168053329397]
我々は,米国民事訴訟の領域から新たなNLPタスクとデータセットを提示する。
データセットの各インスタンスは、ケースの一般的な導入、特定の質問、可能な解決策引数で構成されている。
論文 参考訳(メタデータ) (2022-11-05T17:41:00Z) - Enhancing Legal Argument Mining with Domain Pre-training and Neural
Networks [0.45119235878273]
文脈単語埋め込みモデルであるBERTは、限られた量の注釈付きデータで下流タスクにその能力を証明した。
BERTとその変種は、多くの学際的な研究領域における複雑なアノテーション作業の負担を軽減するのに役立つ。
論文 参考訳(メタデータ) (2022-02-27T21:24:53Z) - On the Ethical Limits of Natural Language Processing on Legal Text [9.147707153504117]
自然言語処理システムの使用に対する倫理的限界を特定する上で、研究者は苦戦していると論じている。
我々は、現在の議論によって過小評価された3つの重要な規範的パラメータに重点を置く。
これら3つのパラメータのそれぞれについて、法的NLPコミュニティに具体的な推奨事項を提供します。
論文 参考訳(メタデータ) (2021-05-06T15:22:24Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
法律人工知能(Legal AI)は、人工知能、特に自然言語処理の技術を適用して、法的領域におけるタスクに役立てることに焦点を当てている。
本稿では,LegalAIにおける研究の歴史,現状,今後の方向性について紹介する。
論文 参考訳(メタデータ) (2020-04-25T14:45:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。