論文の概要: Faster federated optimization under second-order similarity
- arxiv url: http://arxiv.org/abs/2209.02257v2
- Date: Tue, 23 May 2023 02:04:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 01:43:02.228325
- Title: Faster federated optimization under second-order similarity
- Title(参考訳): 2次類似性下での高速なフェデレーション最適化
- Authors: Ahmed Khaled and Chi Jin
- Abstract要約: フェデレーション・ラーニング(FL)は、複数のクライアントが協調してネットワーク上でモデルを学習しようとする機械学習のサブフィールドである。
2階関数類似性条件と強い凸性の下で有限サムフェデレーション最適化を考える。
SVRPとCatalyzed SVRPの2つの新しいアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 36.66443669044588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a subfield of machine learning where multiple
clients try to collaboratively learn a model over a network under communication
constraints. We consider finite-sum federated optimization under a second-order
function similarity condition and strong convexity, and propose two new
algorithms: SVRP and Catalyzed SVRP. This second-order similarity condition has
grown popular recently, and is satisfied in many applications including
distributed statistical learning and differentially private empirical risk
minimization. The first algorithm, SVRP, combines approximate stochastic
proximal point evaluations, client sampling, and variance reduction. We show
that SVRP is communication efficient and achieves superior performance to many
existing algorithms when function similarity is high enough. Our second
algorithm, Catalyzed SVRP, is a Catalyst-accelerated variant of SVRP that
achieves even better performance and uniformly improves upon existing
algorithms for federated optimization under second-order similarity and strong
convexity. In the course of analyzing these algorithms, we provide a new
analysis of the Stochastic Proximal Point Method (SPPM) that might be of
independent interest. Our analysis of SPPM is simple, allows for approximate
proximal point evaluations, does not require any smoothness assumptions, and
shows a clear benefit in communication complexity over ordinary distributed
stochastic gradient descent.
- Abstract(参考訳): フェデレーション・ラーニング(FL)は、複数のクライアントが通信制約の下でネットワーク上のモデルを協調的に学習しようとする機械学習のサブフィールドである。
二階関数類似性条件と強い凸性の下での有限サム連立最適化を考察し、svrpと触媒svrpという2つの新しいアルゴリズムを提案する。
この2階類似性条件は近年普及しており、分散統計学習や微分プライベートな経験的リスク最小化を含む多くの応用で満足されている。
最初のアルゴリズムであるSVRPは、近似確率的近点評価、クライアントサンプリング、分散低減を組み合わせたものである。
SVRPは通信効率が高く,関数の類似性が十分高い場合,既存の多くのアルゴリズムよりも優れた性能を示す。
第2のアルゴリズムである Catalyzed SVRP は触媒加速型 SVRP で,より優れた性能を実現し,第2次類似性と強い凸性の下でのフェデレーション最適化のための既存のアルゴリズムを均一に改善する。
これらのアルゴリズムを解析する過程で、独立性のある確率的近点法(SPPM)を新たに分析する。
我々のSPPMの解析は単純で、近似的近点評価が可能であり、滑らかさの仮定を必要としない。
関連論文リスト
- A Learned Proximal Alternating Minimization Algorithm and Its Induced Network for a Class of Two-block Nonconvex and Nonsmooth Optimization [4.975853671529418]
本研究では,学習可能な2ブロック非平滑問題の解法として,一般学習型交互最小化アルゴリズムLPAMを提案する。
提案するLPAM-netはパラメータ効率が高く,いくつかの最先端手法と比較して良好な性能を示す。
論文 参考訳(メタデータ) (2024-11-10T02:02:32Z) - Fast Two-Time-Scale Stochastic Gradient Method with Applications in Reinforcement Learning [5.325297567945828]
本稿では,従来の手法よりもはるかに高速な収束を実現する2段階最適化手法を提案する。
提案アルゴリズムは,様々な条件下で特徴付けられ,オンラインサンプルベース手法に特化していることを示す。
論文 参考訳(メタデータ) (2024-05-15T19:03:08Z) - Beyond Single-Model Views for Deep Learning: Optimization versus
Generalizability of Stochastic Optimization Algorithms [13.134564730161983]
本稿では、勾配降下(SGD)とその変種に着目し、ディープラーニングの最適化に新しいアプローチを採用する。
我々はSGDとその変種がSAMのような平らなミニマと同等の性能を示すことを示した。
本研究は、トレーニング損失とホールドアウト精度の関係、およびSGDとノイズ対応変種の性能について、いくつかの重要な知見を明らかにした。
論文 参考訳(メタデータ) (2024-03-01T14:55:22Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Adaptive Federated Minimax Optimization with Lower Complexities [82.51223883622552]
本稿では,これらのミニマックス問題の解法として,適応最小最適化アルゴリズム(AdaFGDA)を提案する。
運動量に基づく還元および局所SGD技術を構築し、様々な適応学習率を柔軟に組み込む。
論文 参考訳(メタデータ) (2022-11-14T12:32:18Z) - Faster Adaptive Momentum-Based Federated Methods for Distributed
Composition Optimization [14.579475552088692]
非分散合成問題の解法として,高速なフェデレート合成最適化アルゴリズム(MFCGDとAdaMFCGD)を提案する。
特に、我々の適応アルゴリズム(AdaMFCGD)は、様々な適応学習率を柔軟に組み込むために統一適応行列を使用する。
論文 参考訳(メタデータ) (2022-11-03T15:17:04Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
本稿では,各ステップごとに1つのデータポイントしか必要としない2つの単一スケールシングルループアルゴリズムを提案する。
本研究の結果は, 同時一次および二重側収束の形で表される。
論文 参考訳(メタデータ) (2020-08-23T20:36:49Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
本稿では,深層学習(深層AUC)により注目度が高まっている,円滑な非凹部min-max問題の解法に焦点をあてる。
論文 参考訳(メタデータ) (2020-06-12T00:32:21Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
単純なアルゴリズムは、多くの文脈において優れた経験的結果をもたらすことが示されている。
いくつかの研究は、非最適化問題を研究するための厳密な分析的正当化を追求している。
これらの分析における重要な洞察は、摂動が局所的な降下アルゴリズムを許容する上で重要な役割を担っていることである。
論文 参考訳(メタデータ) (2020-03-31T16:54:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。