論文の概要: Variational Representations of Annealing Paths: Bregman Information
under Monotonic Embedding
- arxiv url: http://arxiv.org/abs/2209.07481v3
- Date: Tue, 6 Feb 2024 13:35:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 21:26:55.744711
- Title: Variational Representations of Annealing Paths: Bregman Information
under Monotonic Embedding
- Title(参考訳): アニーリングパスの変分表現:単調埋め込み下のブレグマン情報
- Authors: Rob Brekelmans, Frank Nielsen
- Abstract要約: 算術平均は、予想されるブレグマン偏差を1つの代表点に最小化することを示す。
本分析では, 準算術的手段, パラメトリック・ファミリー, 発散関数の相互作用に注目した。
- 参考スコア(独自算出の注目度): 12.020235141059992
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Markov Chain Monte Carlo methods for sampling from complex distributions and
estimating normalization constants often simulate samples from a sequence of
intermediate distributions along an annealing path, which bridges between a
tractable initial distribution and a target density of interest. Prior works
have constructed annealing paths using quasi-arithmetic means, and interpreted
the resulting intermediate densities as minimizing an expected divergence to
the endpoints. To analyze these variational representations of annealing paths,
we extend known results showing that the arithmetic mean over arguments
minimizes the expected Bregman divergence to a single representative point. In
particular, we obtain an analogous result for quasi-arithmetic means, when the
inputs to the Bregman divergence are transformed under a monotonic embedding
function. Our analysis highlights the interplay between quasi-arithmetic means,
parametric families, and divergence functionals using the rho-tau
representational Bregman divergence framework, and associates common divergence
functionals with intermediate densities along an annealing path.
- Abstract(参考訳): マルコフ連鎖モンテカルロ法による複素分布のサンプリングと正規化定数の推定は、移動可能な初期分布と関心のターゲット密度とを橋渡しするアニーリングパスに沿った中間分布の列からサンプルをシミュレートすることが多い。
先行研究は準算術的な手段を用いてアニーリングパスを構築し、結果として生じる中間密度は、エンドポイントへの期待分散を最小限に抑えるものとして解釈した。
これらのアニーリングパスの変分表現を分析するために、算術平均の引数が期待されるブレグマン偏差を1つの代表点まで最小化することを示す既知の結果を拡張する。
特に、ブレグマン発散への入力が単調な埋め込み関数の下で変換されるとき、準算術的な方法で類似の結果を得る。
本解析では,rho-tau表現型ブレグマン発散フレームワークを用いた準アリオスメティックな手段,パラメトリック族,発散関数間の相互作用に着目し,発散関数と中間密度をアニーリング経路に沿って関連付ける。
関連論文リスト
- Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - Analytical Approximation of the ELBO Gradient in the Context of the Clutter Problem [0.0]
変分推論問題におけるエビデンス下界(ELBO)の勾配を近似する解析解を提案する。
提案手法は線形計算複雑性とともに精度と収束率を示す。
論文 参考訳(メタデータ) (2024-04-16T13:19:46Z) - Sampling and estimation on manifolds using the Langevin diffusion [45.57801520690309]
離散化マルコフ過程に基づく$mu_phi $の線形汎函数の2つの推定器を検討する。
誤差境界は、本質的に定義されたランゲヴィン拡散の離散化を用いてサンプリングと推定のために導出される。
論文 参考訳(メタデータ) (2023-12-22T18:01:11Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
ポテンシャル関数が支配する分布からサンプリングする問題を考察する。
本研究は, 決定論的な楽譜に基づくMCMC法を提案し, 粒子に対する決定論的進化をもたらす。
論文 参考訳(メタデータ) (2023-08-28T23:51:33Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - The Last-Iterate Convergence Rate of Optimistic Mirror Descent in
Stochastic Variational Inequalities [29.0058976973771]
本稿では,アルゴリズムの収束率とBregman関数によって誘導される局所幾何学との複雑な関係を示す。
この指数はアルゴリズムの最適ステップサイズポリシーと得られた最適レートの両方を決定する。
論文 参考訳(メタデータ) (2021-07-05T09:54:47Z) - q-Paths: Generalizing the Geometric Annealing Path using Power Means [51.73925445218366]
我々は、幾何学と算術の混合を特別なケースとして含むパスのファミリーである$q$-pathsを紹介した。
幾何経路から離れた小さな偏差がベイズ推定に経験的利得をもたらすことを示す。
論文 参考訳(メタデータ) (2021-07-01T21:09:06Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
我々は、一貫した推定子をもたらす離散化が粗粒化下での不変性を持つことを示す。
この結果は、導関数再構成のための微分スキームと局所時間推論アプローチの組み合わせが、2次または高次微分方程式の時系列解析に役立たない理由を説明する。
論文 参考訳(メタデータ) (2021-01-16T17:11:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。