論文の概要: An Empathetic AI Coach for Self-Attachment Therapy
- arxiv url: http://arxiv.org/abs/2209.08316v1
- Date: Sat, 17 Sep 2022 12:01:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 15:38:29.562899
- Title: An Empathetic AI Coach for Self-Attachment Therapy
- Title(参考訳): 自己アタッチメント治療のための共感型AIコーチ
- Authors: Lisa Alazraki, Ali Ghachem, Neophytos Polydorou, Foaad Khosmood and
Abbas Edalat
- Abstract要約: 本稿では,自己着床療法のプロトコルを実践する上でユーザを指導することを目的とした,デジタルコーチのための新しいデータセットと計算戦略を提案する。
本フレームワークは,ルールベースの会話エージェントに,ユーザのテキスト応答の根底にある感情を識別するディープラーニング分類器を付加する。
私たちは、ユーザーが対話することを選択できる、人間のようなペルソナのセットを作ります。
- 参考スコア(独自算出の注目度): 0.4199844472131921
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a new dataset and a computational strategy for a
digital coach that aims to guide users in practicing the protocols of
self-attachment therapy. Our framework augments a rule-based conversational
agent with a deep-learning classifier for identifying the underlying emotion in
a user's text response, as well as a deep-learning assisted retrieval method
for producing novel, fluent and empathetic utterances. We also craft a set of
human-like personas that users can choose to interact with. Our goal is to
achieve a high level of engagement during virtual therapy sessions. We evaluate
the effectiveness of our framework in a non-clinical trial with N=16
participants, all of whom have had at least four interactions with the agent
over the course of five days. We find that our platform is consistently rated
higher for empathy, user engagement and usefulness than the simple rule-based
framework. Finally, we provide guidelines to further improve the design and
performance of the application, in accordance with the feedback received.
- Abstract(参考訳): 本研究では,デジタルコーチのための新たなデータセットと計算戦略を提案する。
本フレームワークは,ユーザのテキスト応答の背景となる感情を識別する深層学習分類器と,新規で流動的で共感的な発話を生成するための深層学習支援検索手法を,ルールベースの会話エージェントに付加する。
ユーザが対話することのできる、人間のようなペルソナも作っています。
私たちの目標は、仮想セラピーセッションで高いレベルのエンゲージメントを達成することです。
我々は,N=16人の被験者を対象に,5日間にわたり少なくとも4人のエージェントと相互作用した非臨床試験において,我々のフレームワークの有効性を評価した。
私たちのプラットフォームは、単純なルールベースのフレームワークよりも共感、ユーザエンゲージメント、有用性に対して一貫して高い評価を受けています。
最後に、受信したフィードバックに応じて、アプリケーションの設計と性能をさらに改善するためのガイドラインを提供する。
関連論文リスト
- Interactive Agents: Simulating Counselor-Client Psychological Counseling via Role-Playing LLM-to-LLM Interactions [12.455050661682051]
本稿では,カウンセラーとクライアントの相互作用をシミュレートするためのロールプレイングを通じて,2つの大きな言語モデル(LLM)を利用するフレームワークを提案する。
我々のフレームワークは2つのLCMで構成され、1つは特定の実生活のユーザープロファイルを備えたクライアントとして機能し、もう1つは経験豊富なカウンセラーとして機能する。
論文 参考訳(メタデータ) (2024-08-28T13:29:59Z) - K-ESConv: Knowledge Injection for Emotional Support Dialogue Systems via
Prompt Learning [83.19215082550163]
K-ESConvは、感情支援対話システムのための、新しい学習に基づく知識注入手法である。
本研究では,情緒的支援データセットESConvを用いて,外部の専門的情緒的Q&Aフォーラムから知識を抽出し,組み込んだモデルを評価した。
論文 参考訳(メタデータ) (2023-12-16T08:10:10Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - Modeling Motivational Interviewing Strategies On An Online Peer-to-Peer
Counseling Platform [35.9642101732025]
本稿では、ピアカウンセラーチャットメッセージからモチベーションの高い面接手法にマッピングすることで、ギャップを埋めることを模索する。
顧客満足度をカウンセリングセッションで予測する手法を検討するため,MI手法が会話評価に与える影響について検討した。
この研究は、ピアツーピアカウンセラープラットフォームにおけるモチベーション面接技術の使用に関する深い理解を提供する。
論文 参考訳(メタデータ) (2022-11-09T20:25:33Z) - SupervisorBot: NLP-Annotated Real-Time Recommendations of Psychotherapy
Treatment Strategies with Deep Reinforcement Learning [13.173307471333619]
本稿では,心理療法セッション中のセラピストに対して,リアルタイムで治療戦略を提案するレコメンデーションシステムを提案する。
本システムでは,評価項目の深層埋め込みと患者が話している現在文との類似度スコアを計算し,治療結果を予測するターンレベル評価機構を用いる。
論文 参考訳(メタデータ) (2022-08-27T19:22:53Z) - Interacting with Non-Cooperative User: A New Paradigm for Proactive
Dialogue Policy [83.61404191470126]
インタラクティブな環境下でプロアクティブなポリシーを学習できるI-Proという新しいソリューションを提案する。
具体的には,4つの要因からなる学習目標重みを通じてトレードオフを学習する。
実験の結果,I-Proは,有効性と解釈性において,ベースラインを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2022-04-07T14:11:31Z) - Enabling AI and Robotic Coaches for Physical Rehabilitation Therapy:
Iterative Design and Evaluation with Therapists and Post-Stroke Survivors [66.07833535962762]
人工知能(AI)とロボットコーチは、社会的相互作用を通じてリハビリテーション運動における患者の関与を改善することを約束する。
これまでの研究は、AIやロボットコーチの運動を自動的に監視する可能性を探ったが、デプロイは依然として難しい課題だ。
我々は,AIとロボットコーチが患者の運動をどのように操作し,指導するかに関する詳細な設計仕様を提示する。
論文 参考訳(メタデータ) (2021-06-15T22:06:39Z) - Automated Quality Assessment of Cognitive Behavioral Therapy Sessions
Through Highly Contextualized Language Representations [34.670548892766625]
認知行動療法(Cognitive Behavioral Therapy, CBT)という,特定の心理療法の行動自動スコアリングモデルを提案する。
このモデルは高い解釈可能性を達成するためにマルチタスクで訓練される。
BERTベースの表現は、利用可能な治療メタデータでさらに拡張され、関連する非言語的コンテキストを提供し、一貫したパフォーマンス改善につながります。
論文 参考訳(メタデータ) (2021-02-23T09:22:29Z) - "Am I A Good Therapist?" Automated Evaluation Of Psychotherapy Skills
Using Speech And Language Technologies [38.726068038788384]
5000以上のレコードのデータセットを使用して、当社のプラットフォームとそのパフォーマンスを説明します。
本システムでは,セッションのダイナミクスに関する情報を含む包括的フィードバックをセラピストに提供する。
我々は、近い将来、自動精神療法評価ツールの広範な利用が専門家の能力を増強すると確信している。
論文 参考訳(メタデータ) (2021-02-22T18:52:52Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z) - Empowering Active Learning to Jointly Optimize System and User Demands [70.66168547821019]
我々は,アクティブラーニングシステムとユーザを協調的に(効率的に学習)するための,新しいアクティブラーニング手法を提案する。
本手法は,特定のユーザに対して,エクササイズの適切性を予測するために,学習を迅速かつ迅速に行う必要があるため,特に,この手法のメリットを生かした教育アプリケーションで研究する。
複数の学習戦略とユーザタイプを実際のユーザからのデータで評価し,代替手法がエンドユーザに適さない多くのエクササイズをもたらす場合,共同アプローチが両方の目標を満足できることを確認した。
論文 参考訳(メタデータ) (2020-05-09T16:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。