論文の概要: Deep learning for gradient flows using the Brezis-Ekeland principle
- arxiv url: http://arxiv.org/abs/2209.14115v1
- Date: Wed, 28 Sep 2022 14:06:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 18:28:11.666670
- Title: Deep learning for gradient flows using the Brezis-Ekeland principle
- Title(参考訳): Brezis-Ekeland 原理を用いた勾配流の深層学習
- Authors: Laura Carini, Max Jensen, Robert N\"urnberg
- Abstract要約: 勾配流として生じる偏微分方程式の数値解の深層学習法を提案する。
この方法は、最小化すべき目的関数を自然に定義するブレジス=エクランドの原理に依存している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a deep learning method for the numerical solution of partial
differential equations that arise as gradient flows. The method relies on the
Brezis--Ekeland principle, which naturally defines an objective function to be
minimized, and so is ideally suited for a machine learning approach using deep
neural networks. We describe our approach in a general framework and illustrate
the method with the help of an example implementation for the heat equation in
space dimensions two to seven.
- Abstract(参考訳): 勾配流として発生する偏微分方程式の数値解のための深層学習法を提案する。
この方法は、目的関数の最小化を自然に定義するbrezis-ekeland原理に依存しているため、深層ニューラルネットワークを用いた機械学習アプローチに理想的に適している。
提案手法は,空間次元2~7の熱方程式の例を用いて,一般的な枠組みで記述し,提案手法を例示する。
関連論文リスト
- Practical Aspects on Solving Differential Equations Using Deep Learning: A Primer [0.0]
このプライマーはDeep Galerkin法に関する技術的および実践的な洞察を提供することを目的としている。
一次元の熱方程式を段階的に解く方法を示す。
また、通常の微分方程式や積分方程式の系にディープ・ガレルキン法を適用する方法を示す。
論文 参考訳(メタデータ) (2024-08-21T01:34:20Z) - Forward Gradient-Based Frank-Wolfe Optimization for Memory Efficient Deep Neural Network Training [0.0]
本稿では,よく知られたFrank-Wolfeアルゴリズムの性能解析に焦点をあてる。
提案アルゴリズムは, 最適解に収束し, サブ線形収束率を示す。
対照的に、標準的なフランク=ウルフアルゴリズムは、プロジェクテッド・フォワード・グラディエントへのアクセスを提供すると、最適解に収束しない。
論文 参考訳(メタデータ) (2024-03-19T07:25:36Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
emphdone right -- 最適化とカーネルコミュニティからの具体的な洞察を使用するという意味で -- が、勾配降下は非常に効果的であることを示している。
本稿では,直感的に設計を記述し,設計選択について説明する。
本手法は,分子結合親和性予測のための最先端グラフニューラルネットワークと同程度にガウス過程の回帰を配置する。
論文 参考訳(メタデータ) (2023-10-31T16:15:13Z) - $r-$Adaptive Deep Learning Method for Solving Partial Differential
Equations [0.685316573653194]
本稿では,Deep Neural Network を用いて部分微分方程式を解くための$r-$adaptiveアルゴリズムを提案する。
提案手法は, テンソル積メッシュに制限され, 境界ノードの位置を1次元で最適化し, そこから2次元または3次元メッシュを構築する。
論文 参考訳(メタデータ) (2022-10-19T21:38:46Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
フィルタ方程式は、数値天気予報、金融、工学など、多くの現実の応用において中心的な役割を果たす。
フィルタリング方程式の解を近似する古典的なアプローチの1つは、分割法と呼ばれるPDEにインスパイアされた方法を使うことである。
我々はこの手法をニューラルネットワーク表現と組み合わせて、信号プロセスの非正規化条件分布の近似を生成する。
論文 参考訳(メタデータ) (2022-01-10T11:01:36Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
我々は、制御に線形に依存する$dot x = sum_i=1lF_i(x)u_i$という形の制御系を考える。
対応するフローを用いて、コンパクトな点のアンサンブル上の微分同相写像の作用を近似する。
論文 参考訳(メタデータ) (2021-10-24T08:57:46Z) - Learning Linearized Assignment Flows for Image Labeling [70.540936204654]
画像ラベリングのための線形化代入フローの最適パラメータを推定するための新しいアルゴリズムを提案する。
この式をKrylov部分空間と低ランク近似を用いて効率的に評価する方法を示す。
論文 参考訳(メタデータ) (2021-08-02T13:38:09Z) - Galerkin Neural Networks: A Framework for Approximating Variational
Equations with Error Control [0.0]
本稿では,ニューラルネットワークを用いて変分方程式の解を近似する手法を提案する。
基本関数がニューラルネットワークの列の実現である有限次元部分空間の列を用いる。
論文 参考訳(メタデータ) (2021-05-28T20:25:40Z) - Deep learning: a statistical viewpoint [120.94133818355645]
ディープラーニングは、理論的観点からいくつかの大きな驚きを明らかにしました。
特に、簡単な勾配法は、最適でないトレーニング問題に対するほぼ完全な解決策を簡単に見つけます。
我々はこれらの現象を具体的原理で補うと推測する。
論文 参考訳(メタデータ) (2021-03-16T16:26:36Z) - Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs [71.26657499537366]
本稿では,ニューラルネットワークモデルにおける勾配の効率的な近似法を提案する。
我々は、分類、密度推定、推論近似タスクにおいて、ニューラルODEをトレーニングするリバースダイナミック手法と比較する。
論文 参考訳(メタデータ) (2020-03-11T13:15:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。