論文の概要: Constrained Dynamic Movement Primitives for Safe Learning of Motor
Skills
- arxiv url: http://arxiv.org/abs/2209.14461v1
- Date: Wed, 28 Sep 2022 22:59:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 17:47:53.179499
- Title: Constrained Dynamic Movement Primitives for Safe Learning of Motor
Skills
- Title(参考訳): 運動スキルの安全学習のための制約付き動的運動プリミティブ
- Authors: Seiji Shaw, Devesh K. Jha, Arvind Raghunathan, Radu Corcodel, Diego
Romeres, George Konidaris and Daniel Nikovski
- Abstract要約: ロボット作業空間における制約満足度を実現するための制約付き動的運動プリミティブ(CDMP)を提案する。
異なる環境における異なるマニピュレータを用いた提案アルゴリズムの実装を示すビデオがここにある。
- 参考スコア(独自算出の注目度): 25.06692536893836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic movement primitives are widely used for learning skills which can be
demonstrated to a robot by a skilled human or controller. While their
generalization capabilities and simple formulation make them very appealing to
use, they possess no strong guarantees to satisfy operational safety
constraints for a task. In this paper, we present constrained dynamic movement
primitives (CDMP) which can allow for constraint satisfaction in the robot
workspace. We present a formulation of a non-linear optimization to perturb the
DMP forcing weights regressed by locally-weighted regression to admit a Zeroing
Barrier Function (ZBF), which certifies workspace constraint satisfaction. We
demonstrate the proposed CDMP under different constraints on the end-effector
movement such as obstacle avoidance and workspace constraints on a physical
robot. A video showing the implementation of the proposed algorithm using
different manipulators in different environments could be found here
https://youtu.be/hJegJJkJfys.
- Abstract(参考訳): ダイナミックムーブメントプリミティブは、熟練した人間やコントローラによってロボットに実演できる学習スキルとして広く使われている。
一般化能力と単純な定式化は使用を非常に魅力的にしますが、タスクの運用上の安全性の制約を満たす強力な保証を持っていません。
本稿では,ロボット作業空間における制約満足度を実現するための制約付き動的運動プリミティブ(CDMP)を提案する。
本稿では,dmp強制重みを局所重み付け回帰により摂動させ,ワークスペース制約満足度を保証するゼロリングバリア関数(zbf)を許容する非線形最適化の定式化を提案する。
ロボットの障害物回避や作業空間制約といったエンドエフェクタ運動に異なる制約の下で提案したCDMPを実証する。
異なる環境における異なるマニピュレータを用いた提案アルゴリズムの実装を示すビデオは、https://youtu.be/hjegjjjjfysで見ることができる。
関連論文リスト
- Programmable Motion Generation for Open-Set Motion Control Tasks [51.73738359209987]
我々は新しいパラダイム、プログラム可能なモーション生成を導入する。
このパラダイムでは、任意の運動制御タスクは原子制約の組み合わせに分解される。
これらの制約は、運動列がそれに付着する程度を定量化するエラー関数にプログラムされる。
論文 参考訳(メタデータ) (2024-05-29T17:14:55Z) - Safe Machine-Learning-supported Model Predictive Force and Motion
Control in Robotics [0.0]
人間とロボットの相互作用や脆弱な物体のハンドリングのような多くのロボットタスクは、安全かつ高性能な操作を実現するために、動き制御と共に現れる力とモーメントの厳密な制御と制限を必要とする。
本研究では,学習支援型モデル予測力と運動制御方式を提案する。
論文 参考訳(メタデータ) (2023-03-08T13:30:02Z) - Safe Imitation Learning of Nonlinear Model Predictive Control for Flexible Robots [6.501150406218775]
模擬学習と予測安全フィルタを用いたモデル予測制御(NMPC)の安全な近似のためのフレームワークを提案する。
NMPCと比較して、シミュレーションにおいて3次元フレキシブルロボットアームを制御する場合、計算時間は8倍以上改善されている。
高速で安全な近似NMPCの開発は、産業における柔軟なロボットの採用を加速する可能性を秘めている。
論文 参考訳(メタデータ) (2022-12-06T12:54:08Z) - Differentiable Constrained Imitation Learning for Robot Motion Planning
and Control [0.26999000177990923]
我々は,交通エージェントのシミュレーションだけでなく,ロボットの動作計画と制御を制約するフレームワークを開発した。
モバイルロボットと自動運転アプリケーションに焦点をあてる。
移動ロボットナビゲーションと自動走行のシミュレーション実験は,提案手法の性能を示す証拠となる。
論文 参考訳(メタデータ) (2022-10-21T08:19:45Z) - Regularized Deep Signed Distance Fields for Reactive Motion Generation [30.792481441975585]
距離に基づく制約は、ロボットが自分の行動を計画し、安全に行動できるようにするための基本となる。
本研究では,任意のスケールでスムーズな距離場を計算できる単一暗黙関数ReDSDFを提案する。
共有作業空間における全身制御(WBC)と安全なヒューマンロボットインタラクション(HRI)のための代表的タスクにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-03-09T14:21:32Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
本稿では,リアル・ツー・シムの報酬分析手法を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
連続的なアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成します。
我々は,RMPCが乱雑な環境だけでなく,乱雑な環境においても頑健であり,ベースラインよりも優れていることを観察した。
論文 参考訳(メタデータ) (2021-11-15T18:50:04Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - Large Scale Distributed Collaborative Unlabeled Motion Planning with
Graph Policy Gradients [122.85280150421175]
本研究では,運動制約と空間制約を多数のロボットに対して2次元空間で解くための学習法を提案する。
ロボットのポリシーをパラメータ化するためにグラフニューラルネットワーク(GNN)を用いる。
論文 参考訳(メタデータ) (2021-02-11T21:57:43Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
感覚運動制御における現在の主流パラダイムは、模倣であれ強化学習であれ、生の行動空間で政策を直接訓練することである。
軌道分布空間の予測を行うニューラル・ダイナミック・ポリシー(NDP)を提案する。
NDPは、いくつかのロボット制御タスクにおいて、効率と性能の両面で、これまでの最先端よりも優れている。
論文 参考訳(メタデータ) (2020-12-04T18:59:32Z) - Improving Input-Output Linearizing Controllers for Bipedal Robots via
Reinforcement Learning [85.13138591433635]
入力出力線形化コントローラの主な欠点は、正確な力学モデルが必要であり、入力制約を考慮できないことである。
本稿では,強化学習技術を用いた二足歩行ロボット制御の具体例について,両課題に対処する。
論文 参考訳(メタデータ) (2020-04-15T18:15:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。