論文の概要: A Multi-Agent Framework for the Asynchronous and Collaborative Extension
of Multitask ML Systems
- arxiv url: http://arxiv.org/abs/2209.14745v1
- Date: Thu, 29 Sep 2022 13:02:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 15:43:53.920476
- Title: A Multi-Agent Framework for the Asynchronous and Collaborative Extension
of Multitask ML Systems
- Title(参考訳): マルチタスクMLシステムの非同期・協調拡張のためのマルチエージェントフレームワーク
- Authors: Andrea Gesmundo
- Abstract要約: トラジションML開発方法論は、多くのコントリビュータが共有インテリジェントシステムの作成と拡張に一括して取り組むことができない。
本稿では,動的大規模マルチタスクインテリジェントシステムの協調的および非同期拡張のためのマルチエージェントフレームワークを提案する。
- 参考スコア(独自算出の注目度): 2.579908688646812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tradition ML development methodology does not enable a large number of
contributors, each with distinct objectives, to work collectively on the
creation and extension of a shared intelligent system. Enabling such a
collaborative methodology can accelerate the rate of innovation, increase ML
technologies accessibility and enable the emergence of novel capabilities. We
believe that this can be achieved through the definition of abstraction
boundaries and a modularized representation of ML models and methods. We
present a multi-agent framework for collaborative and asynchronous extension of
dynamic large-scale multitask intelligent systems.
- Abstract(参考訳): 従来のml開発方法論では、個々の目的を持った多数のコントリビュータが、共有インテリジェントシステムの作成と拡張に協力することはできません。
このような共同方法論の導入は、イノベーションの速度を加速し、ML技術のアクセシビリティを高め、新しい能力の出現を可能にする。
これは抽象化境界の定義とmlモデルとメソッドのモジュール化表現によって達成できると考えています。
本稿では,動的大規模マルチタスクインテリジェントシステムの協調的および非同期拡張のためのマルチエージェントフレームワークを提案する。
関連論文リスト
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - LLMs Can Evolve Continually on Modality for X-Modal Reasoning [62.2874638875554]
既存の手法は、モーダル固有の事前訓練とジョイント・モーダルチューニングに大きく依存しており、新しいモーダルへと拡張する際の計算上の負担が大きくなった。
PathWeaveは、Modal-Path sWitchingとExpAnsion機能を備えた柔軟でスケーラブルなフレームワークである。
PathWeaveは最先端のMLLMと互換性があり、パラメータトレーニングの負担を98.73%削減する。
論文 参考訳(メタデータ) (2024-10-26T13:19:57Z) - COLLAGE: Collaborative Human-Agent Interaction Generation using Hierarchical Latent Diffusion and Language Models [14.130327598928778]
大規模言語モデル (LLMs) と階層型運動固有ベクトル量子化変分オートエンコーダ (VQ-VAEs) を提案する。
我々のフレームワークは、現実的で多様な協調的な人間-オブジェクト-ヒューマンインタラクションを生成し、最先端の手法より優れています。
我々の研究は、ロボット工学、グラフィックス、コンピュータビジョンなど、様々な領域における複雑な相互作用をモデリングする新たな可能性を開く。
論文 参考訳(メタデータ) (2024-09-30T17:02:13Z) - BMW Agents -- A Framework For Task Automation Through Multi-Agent Collaboration [0.0]
我々は、様々なドメインにわたる複雑なユースケースアプリケーションを扱う柔軟なエージェントエンジニアリングフレームワークの設計に重点を置いている。
提案するフレームワークは,産業用アプリケーションの信頼性を提供し,複数の自律エージェントに対して,スケーラブルでフレキシブルで協調的なワークフローを保証するためのテクニックを提供する。
論文 参考訳(メタデータ) (2024-06-28T16:39:20Z) - Scaling Large-Language-Model-based Multi-Agent Collaboration [75.5241464256688]
大規模言語モデルによるエージェントのパイオニア化は、マルチエージェントコラボレーションの設計パターンを暗示している。
神経スケーリング法則に触発された本研究では,マルチエージェント協調におけるエージェントの増加に類似の原理が適用されるかを検討する。
論文 参考訳(メタデータ) (2024-06-11T11:02:04Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
そこで我々は,MoEアーキテクチャをUni-MoEと呼ぶ一貫したMLLMを開発し,様々なモダリティを扱えるようにした。
具体的には、統一マルチモーダル表現のためのコネクタを持つモダリティ特化エンコーダを特徴とする。
マルチモーダルデータセットの包括的集合を用いた命令調整Uni-MoEの評価を行った。
論文 参考訳(メタデータ) (2024-05-18T12:16:01Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
大規模言語モデル(LLM)はマルチメディアアプリケーションで複数のタスクを実行する上で大きな可能性を証明している。
MoEは、効率的なタスクデカップリングのためのスパースアーキテクチャによる有望なソリューションとして登場した。
Intuition-MoR1Eは14のパブリックデータセットで優れた効率と2.15%の全体的な精度向上を実現している。
論文 参考訳(メタデータ) (2024-04-13T12:14:58Z) - Interactive Continual Learning: Fast and Slow Thinking [19.253164551254734]
本稿では,対話型連続学習フレームワークを提案する。
System1におけるメモリ検索を改善するために,von Mises-Fisher(vMF)分布に基づくCL-vMF機構を導入する。
提案したICLの包括的評価は,既存の手法と比較して,忘れられ,優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-05T03:37:28Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
本稿では,既存のMLLMのモデル構成による新しいパラダイムを提案する。
我々の基本的な実装であるNaiveMCは、モダリティエンコーダを再利用し、LLMパラメータをマージすることで、このパラダイムの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-20T06:38:10Z) - A Continual Development Methodology for Large-scale Multitask Dynamic ML
Systems [2.579908688646812]
提示された研究は、MLモデルをモジュラーおよびアンバウンドアーティファクトとして定義することで、新しいML開発方法論を導入することができるという直感に基づいている。
マルチタスクMLモデルを生成するための新しい手法を,拡張とマルチタスクのシーケンスとして定義する。
これにより、サイズと計算コストが向上し、アート品質の状態を達成した124のイメージ分類タスクを共同で解決できるMLモデルが生成される。
論文 参考訳(メタデータ) (2022-09-15T14:36:17Z) - AutonoML: Towards an Integrated Framework for Autonomous Machine
Learning [9.356870107137095]
Reviewは、自動化された自動MLシステムを構成するものに関して、より広範な視点を動機付けようとしている。
その上で、以下の研究領域の開発状況を調査します。
我々は、各トピックによって拡張されたレビューを通して概念的枠組みを開発し、高レベルなメカニズムを自律mlシステムに融合する方法を1つ紹介する。
論文 参考訳(メタデータ) (2020-12-23T11:01:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。