論文の概要: Probabilistic partition of unity networks for high-dimensional
regression problems
- arxiv url: http://arxiv.org/abs/2210.02694v1
- Date: Thu, 6 Oct 2022 06:01:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 17:58:26.090409
- Title: Probabilistic partition of unity networks for high-dimensional
regression problems
- Title(参考訳): 高次元回帰問題に対するユニタリネットワークの確率的分割
- Authors: Tiffany Fan, Nathaniel Trask, Marta D'Elia, Eric Darve
- Abstract要約: 我々は高次元回帰問題におけるユニタリネットワーク(PPOU-Net)モデルの分割について検討する。
PPOU-Netsは次元の数値実験において、同等の大きさの完全接続ニューラルネットワークよりも一貫して優れていることを示す。
また、PPOU-Netsモデルを用いて、変動量子回路に関連するコストランドスケープをモデル化する量子コンピューティングの応用モデルについても検討する。
- 参考スコア(独自算出の注目度): 1.0227479910430863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the probabilistic partition of unity network (PPOU-Net) model in
the context of high-dimensional regression problems. With the PPOU-Nets, the
target function for any given input is approximated by a mixture of experts
model, where each cluster is associated with a fixed-degree polynomial. The
weights of the clusters are determined by a DNN that defines a partition of
unity. The weighted average of the polynomials approximates the target function
and produces uncertainty quantification naturally. Our training strategy
leverages automatic differentiation and the expectation maximization (EM)
algorithm. During the training, we (i) apply gradient descent to update the DNN
coefficients; (ii) update the polynomial coefficients using weighted
least-squares solves; and (iii) compute the variance of each cluster according
to a closed-form formula derived from the EM algorithm. The PPOU-Nets
consistently outperform the baseline fully-connected neural networks of
comparable sizes in numerical experiments of various data dimensions. We also
explore the proposed model in applications of quantum computing, where the
PPOU-Nets act as surrogate models for cost landscapes associated with
variational quantum circuits.
- Abstract(参考訳): 我々は高次元回帰問題の文脈におけるユニタリネットワーク(PPOU-Net)モデルの確率的分割について検討する。
PPOU-Netsでは、任意の入力に対するターゲット関数は、各クラスタが固定度多項式に関連付けられている専門家モデルの混合によって近似される。
クラスタの重みは、単位の分割を定義するDNNによって決定される。
多項式の重み付き平均は対象関数に近似し、自然に不確かさを定量化する。
トレーニング戦略は自動微分と予測最大化(EM)アルゴリズムを活用する。
トレーニング中、私たちは
i) DNN係数を更新するために勾配降下を適用する。
(ii)重み付き最小二乗法を用いて多項式係数を更新する。
(iii)emアルゴリズムから導かれた閉形式式に従って各クラスタの分散を計算する。
PPOU-Netsは、様々なデータ次元の数値実験において、同等の大きさのベースライン完全接続ニューラルネットワークを一貫して上回っている。
また、PPOU-Netが変動量子回路に関連するコストランドスケープの代理モデルとして機能する量子コンピューティングの応用における提案モデルについても検討する。
関連論文リスト
- The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Deep Learning-based surrogate models for parametrized PDEs: handling
geometric variability through graph neural networks [0.0]
本研究では,時間依存型PDEシミュレーションにおけるグラフニューラルネットワーク(GNN)の可能性について検討する。
本稿では,データ駆動型タイムステッピング方式に基づくサロゲートモデルを構築するための体系的戦略を提案する。
GNNは,計算効率と新たなシナリオへの一般化の観点から,従来の代理モデルに代わる有効な代替手段を提供することができることを示す。
論文 参考訳(メタデータ) (2023-08-03T08:14:28Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Probabilistic partition of unity networks: clustering based deep
approximation [0.0]
ユニタリネットワーク(POU-Nets)の分割は、回帰とPDEの解に対する代数収束率を実現することができる。
ガウス雑音モデルを用いてPOU-Netを拡張し、最大可算損失の勾配に基づく一般化を導出できる確率的一般化を得る。
本研究では,高次元・低次元での性能を定量化するためのベンチマークを行い,高次元空間内のデータの潜在次元にのみ依存することを示す。
論文 参考訳(メタデータ) (2021-07-07T08:02:00Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
我々は、ニューラルネットワーク(NN)モデルの一般化精度を予測するために、コンテストで公に利用可能にされたモデルのコーパスを分析する。
メトリクスが全体としてよく機能するが、データのサブパーティションではあまり機能しない。
本稿では,データに依存しない2つの新しい形状指標と,一連のNNのテスト精度の傾向を予測できるデータ依存指標を提案する。
論文 参考訳(メタデータ) (2021-06-01T19:19:49Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
我々は、最適輸送(OT)の概念に基づく偏微分方程式(PDE)の解法として、よく知られた物理情報ニューラルネットワーク(PINN)の改良戦略を提案する。
PINNの解法は、完全接続された病理のスペクトルバイアス、不安定な勾配、収束と精度の難しさなど、多くの問題に悩まされている。
本稿では,既存の PINN フレームワークを補完する OT-based sample を用いて,Fokker-Planck-Kolmogorov Equation (FPKE) を解くための新しいトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-05-26T02:51:20Z) - Neural Mixture Distributional Regression [0.9023847175654603]
フレキシブルな加法予測器によって定義される分布回帰の有限混合を推定する包括的枠組みを提案する。
我々のフレームワークは、高次元の設定において、潜在的に異なる分布の多くの混合を処理できる。
論文 参考訳(メタデータ) (2020-10-14T09:00:16Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Model Reduction and Neural Networks for Parametric PDEs [9.405458160620533]
無限次元空間間の入出力マップをデータ駆動で近似するフレームワークを開発した。
提案されたアプローチは、最近のニューラルネットワークとディープラーニングの成功に動機づけられている。
入力出力マップのクラスと、入力に対する適切な選択された確率測度について、提案手法の収束性を証明する。
論文 参考訳(メタデータ) (2020-05-07T00:09:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。