Multi-objective and multi-fidelity Bayesian optimization of laser-plasma
acceleration
- URL: http://arxiv.org/abs/2210.03484v1
- Date: Fri, 7 Oct 2022 12:09:09 GMT
- Title: Multi-objective and multi-fidelity Bayesian optimization of laser-plasma
acceleration
- Authors: Faran Irshad, Stefan Karsch and Andreas D\"opp
- Abstract summary: We present first results on multi-objective optimization of a simulated laser-plasma accelerator.
We find that multi-objective optimization is equal or even superior in performance to its single-objective counterparts.
We significantly reduce the computational costs of the optimization by choosing the resolution and box size of the simulations dynamically.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Beam parameter optimization in accelerators involves multiple, sometimes
competing objectives. Condensing these multiple objectives into a single
objective unavoidably results in bias towards particular outcomes that do not
necessarily represent the best possible outcome for the operator in terms of
parameter optimization. A more versatile approach is multi-objective
optimization, which establishes the trade-off curve or Pareto front between
objectives. Here we present first results on multi-objective Bayesian
optimization of a simulated laser-plasma accelerator. We find that
multi-objective optimization is equal or even superior in performance to its
single-objective counterparts, and that it is more resilient to different
statistical descriptions of objectives.
As a second major result of our paper, we significantly reduce the
computational costs of the optimization by choosing the resolution and box size
of the simulations dynamically. This is relevant since even with the use of
Bayesian statistics, performing such optimizations on a multi-dimensional
search space may require hundreds or thousands of simulations. Our algorithm
translates information gained from fast, low-resolution runs with lower
fidelity to high-resolution data, thus requiring fewer actual simulations at
highest computational cost.
The techniques demonstrated in this paper can be translated to many different
use cases, both computational and experimental.
Related papers
- Trajectory-Based Multi-Objective Hyperparameter Optimization for Model Retraining [8.598456741786801]
We present a novel trajectory-based multi-objective Bayesian optimization algorithm.
Our algorithm outperforms the state-of-the-art multi-objectives in both locating better trade-offs and tuning efficiency.
arXiv Detail & Related papers (2024-05-24T07:43:45Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - A Survey on Multi-Objective based Parameter Optimization for Deep
Learning [1.3223682837381137]
We focus on exploring the effectiveness of multi-objective optimization strategies for parameter optimization in conjunction with deep neural networks.
The two methods are combined to provide valuable insights into the generation of predictions and analysis in multiple applications.
arXiv Detail & Related papers (2023-05-17T07:48:54Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Leveraging Trust for Joint Multi-Objective and Multi-Fidelity
Optimization [0.0]
This paper investigates a novel approach to Bayesian multi-objective and multi-fidelity (MOMF) optimization.
We suggest the innovative use of a trust metric to support simultaneous optimization of multiple objectives and data sources.
Our methods offer broad applicability in solving simulation problems in fields such as plasma physics and fluid dynamics.
arXiv Detail & Related papers (2021-12-27T20:55:26Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
We show that an increasing large momentum parameter for the first-order moment is sufficient for adaptive scaling.
We also give insights for increasing the momentum in a stagewise manner in accordance with stagewise decreasing step size.
arXiv Detail & Related papers (2021-04-30T08:50:24Z) - Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space
Entropy Search Approach [44.25245545568633]
We study the novel problem of blackbox optimization of multiple objectives via multi-fidelity function evaluations.
Our experiments on several synthetic and real-world benchmark problems show that MF-OSEMO, with both approximations, significantly improves over the state-of-the-art single-fidelity algorithms.
arXiv Detail & Related papers (2020-11-02T06:59:04Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Information-Theoretic Multi-Objective Bayesian Optimization with
Continuous Approximations [44.25245545568633]
We propose information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations (iMOCA) to solve this problem.
Our experiments on diverse synthetic and real-world benchmarks show that iMOCA significantly improves over existing single-fidelity methods.
arXiv Detail & Related papers (2020-09-12T01:46:03Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
arXiv Detail & Related papers (2020-08-02T02:56:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.