論文の概要: Rieoptax: Riemannian Optimization in JAX
- arxiv url: http://arxiv.org/abs/2210.04840v1
- Date: Mon, 10 Oct 2022 16:55:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 19:55:50.605338
- Title: Rieoptax: Riemannian Optimization in JAX
- Title(参考訳): Rieoptax: JAX における Riemann 最適化
- Authors: Saiteja Utpala, Andi Han, Pratik Jawanpuria, Bamdev Mishra
- Abstract要約: 我々は、多くの微分プリミティブが、CPUとGPUの両方で、Pythonの既存のフレームワークよりもRieoptaxの方が高速であることを示す。
我々は、リーマン勾配、分散還元、適応法など、様々な基本的および高度な最適化解法をサポートする。
- 参考スコア(独自算出の注目度): 15.102260054654922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Rieoptax, an open source Python library for Riemannian
optimization in JAX. We show that many differential geometric primitives, such
as Riemannian exponential and logarithm maps, are usually faster in Rieoptax
than existing frameworks in Python, both on CPU and GPU. We support various
range of basic and advanced stochastic optimization solvers like Riemannian
stochastic gradient, stochastic variance reduction, and adaptive gradient
methods. A distinguishing feature of the proposed toolbox is that we also
support differentially private optimization on Riemannian manifolds.
- Abstract(参考訳): JAXにおけるRiemann最適化のためのオープンソースのPythonライブラリであるRieoptaxを紹介します。
リーマン指数写像や対数写像のような多くの微分幾何学的プリミティブは、通常、CPUやGPU上のPythonの既存のフレームワークよりも高速である。
我々は,リーマン確率勾配,確率分散低減,適応勾配法など,様々な基本的および高度な確率最適化解法をサポートする。
提案するツールボックスの特徴は、リーマン多様体上の微分的プライベート最適化もサポートする点である。
関連論文リスト
- Riemannian coordinate descent algorithms on matrix manifolds [12.05722932030768]
行列多様体上で計算効率の良い座標降下(CD)アルゴリズムを開発するための一般的なフレームワークを提供する。
我々は、Stiefel, Grassmann, (Generalized) hyperbolic, symplectic, and symmetric positive (semi) definite などの多様体に対するCDアルゴリズムを提案する。
我々はそれらの収束と複雑性を分析し、いくつかのアプリケーションでその効果を実証的に説明する。
論文 参考訳(メタデータ) (2024-06-04T11:37:11Z) - Riemannian Bilevel Optimization [35.42472057648458]
特に,2次情報を回避することを目的とした,バッチおよび勾配に基づく手法に着目する。
本稿では,一階勾配情報を活用する手法である$mathrmRF2SA$を提案し,分析する。
様々な設定の下で、$epsilon$-stationary 点に達するための明示的な収束率を提供する。
論文 参考訳(メタデータ) (2024-05-22T20:49:01Z) - Streamlining in the Riemannian Realm: Efficient Riemannian Optimization
with Loopless Variance Reduction [4.578425862931332]
本研究はユークリッドとリーマンの設定の両方で用いられる決定的な還元機構に焦点を当てる。
ユークリッド法により動機付け, コインフリップによって引き起こされる計算で外ループを置換するR法を導入する。
フレームワークとしてR-を用いることで、様々な重要な設定に適用可能であることを示す。
論文 参考訳(メタデータ) (2024-03-11T12:49:37Z) - FORML: A Riemannian Hessian-free Method for Meta-learning on Stiefel Manifolds [4.757859522106933]
本稿では、スティーフェル多様体上の微分の1次近似を用いたヘッセンフリーアプローチを提案する。
本手法は計算負荷とメモリフットプリントを大幅に削減する。
論文 参考訳(メタデータ) (2024-02-28T10:57:30Z) - Decentralized Riemannian Conjugate Gradient Method on the Stiefel
Manifold [59.73080197971106]
本稿では,最急降下法よりも高速に収束する一階共役最適化法を提案する。
これはスティーフェル多様体上の大域収束を達成することを目的としている。
論文 参考訳(メタデータ) (2023-08-21T08:02:16Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
我々はガウス過程の適用性を高める技術を開発した。
この観点から構築した効率的な近似を幅広く導入する。
非ユークリッド空間上のガウス過程モデルの集合を開発する。
論文 参考訳(メタデータ) (2022-02-22T01:42:57Z) - Geometry-aware Bayesian Optimization in Robotics using Riemannian
Mat\'ern Kernels [64.62221198500467]
ベイズ最適化のための幾何対応カーネルの実装方法を示す。
この技術は、ロボット工学における制御パラメータチューニング、パラメトリックポリシー適応、構造設計に利用できる。
論文 参考訳(メタデータ) (2021-11-02T09:47:22Z) - Automatic differentiation for Riemannian optimization on low-rank matrix
and tensor-train manifolds [71.94111815357064]
科学計算および機械学習アプリケーションでは、行列およびより一般的な多次元配列(テンソル)は、しばしば低ランク分解の助けを借りて近似することができる。
低ランク近似を見つけるための一般的なツールの1つはリーマン最適化を使うことである。
論文 参考訳(メタデータ) (2021-03-27T19:56:00Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
データに固有の非線形幾何学構造をモデル化する原則的な方法が提供される。
しかし、これらの演算は通常計算的に要求される。
特に、正規法則上の積分を数値計算するためにベイズ二次(bq)に焦点を当てる。
先行知識と活発な探索手法を両立させることで,BQは必要な評価回数を大幅に削減できることを示す。
論文 参考訳(メタデータ) (2021-02-12T17:38:04Z) - Riemannian Stochastic Proximal Gradient Methods for Nonsmooth
Optimization over the Stiefel Manifold [7.257751371276488]
R-ProxSGDとR-ProxSPBは、近位SGDと近位SpiderBoostの一般化である。
R-ProxSPBアルゴリズムは、オンラインの場合で$O(epsilon-3)$ IFOs、有限サムの場合は$O(n+sqrtnepsilon-3)$ IFOsである。
論文 参考訳(メタデータ) (2020-05-03T23:41:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。