論文の概要: A quantum analytical Adam descent through parameter shift rule using
Qibo
- arxiv url: http://arxiv.org/abs/2210.10787v1
- Date: Wed, 19 Oct 2022 18:00:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-22 01:36:28.843744
- Title: A quantum analytical Adam descent through parameter shift rule using
Qibo
- Title(参考訳): Qiboを用いたパラメータシフト則による量子解析アダム降下
- Authors: Matteo Robbiati, Stavros Efthymiou, Andrea Pasquale and Stefano
Carrazza
- Abstract要約: まず,Qiboフレームワークを用いた勾配評価アルゴリズムとその最適化手順について述べる。
我々は,Qiboが制御する1つの超伝導量子ビットチップを用いて,完全な量子ハードウェア最適化演習を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this proceedings we present quantum machine learning optimization
experiments using stochastic gradient descent with the parameter shift rule
algorithm. We first describe the gradient evaluation algorithm and its
optimization procedure implemented using the Qibo framework. After numerically
testing the implementation using quantum simulation on classical hardware, we
perform successfully a full quantum hardware optimization exercise using a
single superconducting qubit chip controlled by Qibo. We show results for a
quantum regression model by comparing simulation to real hardware optimization.
- Abstract(参考訳): 本稿では,パラメータシフトルールアルゴリズムを用いた確率勾配降下を用いた量子機械学習最適化実験を行う。
まず,Qiboフレームワークを用いた勾配評価アルゴリズムとその最適化手順について述べる。
古典的ハードウェア上で量子シミュレーションによる実装を数値的に検証した結果,qiboが制御する1つの超伝導量子ビットチップを用いて,完全な量子ハードウェア最適化を行った。
シミュレーションと実際のハードウェア最適化を比較して量子回帰モデルの結果を示す。
関連論文リスト
- Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
近年,変分量子回路の最適化のためのQNGアルゴリズムが提案されている。
本研究では、この離散時間解が一般化形式を与えることを示すために、QNG力を持つランゲヴィン方程式を用いる。
論文 参考訳(メタデータ) (2024-09-03T15:21:16Z) - Efficient Quantum Gradient and Higher-order Derivative Estimation via Generalized Hadamard Test [2.5545813981422882]
パラメータ化量子回路(PQC)の動作を理解するためには、勾配に基づく手法が不可欠である
有限差分、シフト規則、アダマール試験、直接アダマール試験などの既存の勾配推定法は、特定のPQCに対して最適な勾配回路を得ることが多い。
本稿では,一階勾配推定法に適用したフレキシブル・アダマールテスト(Flexible Hadamard Test)を提案する。
また、PQ内の個々のパラメータに対する最適勾配推定手法を適応的に選択する統一勾配法である量子自動微分(QAD)を導入する。
論文 参考訳(メタデータ) (2024-08-10T02:08:54Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
本稿では,デジタルカウンセバティック量子最適化(DCQO)パラダイムを用いて,ポートフォリオ最適化のための高速なディジタル量子アルゴリズムを提案する。
提案手法は,アルゴリズムの回路深度要件を特に低減し,解の精度を向上し,現在の量子プロセッサに適している。
我々は,IonQトラップイオン量子コンピュータ上で最大20量子ビットを使用するプロトコルの利点を実験的に実証した。
論文 参考訳(メタデータ) (2023-08-29T17:53:08Z) - QuACK: Accelerating Gradient-Based Quantum Optimization with Koopman Operator Learning [4.134992977596645]
本稿では、量子コンピュータ上での勾配ダイナミクスの効率的な予測に交互アルゴリズムを活用する新しいフレームワークQuACKを提案する。
量子最適化と機械学習の幅広い応用において、勾配に基づく最適化を加速するQuACKの驚くべき能力を示す。
論文 参考訳(メタデータ) (2022-11-02T17:59:25Z) - Differentiable Analog Quantum Computing for Optimization and Control [14.736412617211538]
我々は、アナログ信号(パルス)レベルで特定のパラメータ化設計により、最初の微分可能なアナログ量子コンピューティングフレームワークを定式化する。
我々は,モンテカルロサンプリングを用いた前方通過法を用いて量子力学の勾配を推定するスケーラブルな手法を提案する。
論文 参考訳(メタデータ) (2022-10-28T00:28:31Z) - Evaluating the Convergence of Tabu Enhanced Hybrid Quantum Optimization [58.720142291102135]
本稿では,量子ハードウェア上での最適化問題解決に有用な Tabu Enhanced Hybrid Quantum Optimization メタヒューリスティック手法を提案する。
提案手法の理論的収束を,イジングモデルに基づくタブ状態を保存する対象の衝突の観点から考察する。
論文 参考訳(メタデータ) (2022-09-05T07:23:03Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Efficient calculation of gradients in classical simulations of
variational quantum algorithms [0.0]
O(P)時間における勾配を正確に計算するエミュレーション戦略の新たな導出法を提案する。
私たちの戦略は非常にシンプルで、'apply gate'、'clone state'、'inner product'プリミティブのみを使用します。
ゲート並列化スキームやハードウェアアクセラレーションや分散シミュレータと互換性がある。
論文 参考訳(メタデータ) (2020-09-06T21:39:44Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
本研究では,量子計測から直接最適化される関数の勾配を推定する問題について検討する。
マルチキュービットパラメトリック量子進化の勾配を推定するアルゴリズムを提供する数学的に正確な公式を導出する。
私たちのアルゴリズムは、利用可能な全ての量子ゲートがノイズである場合でも、いくつかの近似で機能し続けています。
論文 参考訳(メタデータ) (2020-05-20T18:24:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。