論文の概要: Uncertainty Disentanglement with Non-stationary Heteroscedastic Gaussian
Processes for Active Learning
- arxiv url: http://arxiv.org/abs/2210.10964v1
- Date: Thu, 20 Oct 2022 02:18:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-21 15:26:11.013208
- Title: Uncertainty Disentanglement with Non-stationary Heteroscedastic Gaussian
Processes for Active Learning
- Title(参考訳): 非定常ヘテロセダス的ガウス過程による能動学習の不確かさの解消
- Authors: Zeel B Patel, Nipun Batra, Kevin Murphy
- Abstract要約: 勾配に基づく手法で学習可能な非定常ヘテロセダスティックガウス過程モデルを提案する。
提案手法は, 全体的な不確かさを, アレタリック(非再現性)とてんかん(モデル)の不確実性に分離することにより, モデルの解釈可能性を示す。
- 参考スコア(独自算出の注目度): 10.757942829334057
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian processes are Bayesian non-parametric models used in many areas. In
this work, we propose a Non-stationary Heteroscedastic Gaussian process model
which can be learned with gradient-based techniques. We demonstrate the
interpretability of the proposed model by separating the overall uncertainty
into aleatoric (irreducible) and epistemic (model) uncertainty. We illustrate
the usability of derived epistemic uncertainty on active learning problems. We
demonstrate the efficacy of our model with various ablations on multiple
datasets.
- Abstract(参考訳): ガウス過程は、多くの領域で使用されるベイズ非パラメトリックモデルである。
本研究では,勾配に基づく手法で学習可能な非定常ヘテロセダス的ガウス過程モデルを提案する。
提案モデルの解釈性は,全体の不確実性(既約)と認識的不確実性(モデル)を分離することで証明する。
アクティブラーニング問題に対する認識的不確かさの導出の有用性について述べる。
モデルの有効性を,複数のデータセットで検証した。
関連論文リスト
- Learning Latent Space Dynamics with Model-Form Uncertainties: A Stochastic Reduced-Order Modeling Approach [0.0]
本稿では,複素系の低次モデリングにおけるモデル形式不確かさの表現と定量化のための確率論的アプローチを提案する。
提案手法は,プロジェクション行列のランダム化により近似空間を拡張することにより,これらの不確実性を捉える。
提案手法の有効性は, 推算演算子に対するモデル形状の不確実性の影響を同定し, 定量化することにより, 流体力学における正準問題に対して評価される。
論文 参考訳(メタデータ) (2024-08-30T19:25:28Z) - DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid
Neural Modeling [4.76185521514135]
本稿では,ハイブリッドニューラル微分可能モデルにおける有効かつ効率的な不確実性伝播と推定のための新しい手法DiffHybrid-UQを提案する。
具体的には,データノイズとてんかんの不確かさから生じるアレタリック不確かさと,モデル形状の相違やデータ空間のばらつきから生じるエピステマティック不確かさの両方を効果的に識別し,定量化する。
論文 参考訳(メタデータ) (2023-12-30T07:40:47Z) - Assessing the overall and partial causal well-specification of nonlinear additive noise models [4.13592995550836]
このような誤用があっても因果関係を推測できる予測変数を同定することを目的としている。
本稿では,有限サンプルデータに対するアルゴリズムを提案し,その特性について議論し,シミュレーションおよび実データ上での性能を示す。
論文 参考訳(メタデータ) (2023-10-25T09:44:16Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian
Nonparametrics [85.31247588089686]
変分ベイズ法はベイズモデルのパラメトリック的および非パラメトリック的側面に対して感性が得られることを示す。
ベイズ感度分析に対する変動的アプローチの理論的および経験的支援を提供する。
論文 参考訳(メタデータ) (2021-07-08T03:40:18Z) - Compositional Modeling of Nonlinear Dynamical Systems with ODE-based
Random Features [0.0]
この問題に対処するための新しいドメインに依存しないアプローチを提案する。
我々は、通常の微分方程式から導かれる物理インフォームド・ランダムな特徴の合成を用いる。
提案手法は,ベンチマーク回帰タスクにおいて,他の多くの確率モデルに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2021-06-10T17:55:13Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Nonlinear Independent Component Analysis for Continuous-Time Signals [85.59763606620938]
このプロセスの混合物の観察から多次元音源過程を復元する古典的問題を考察する。
このリカバリは、この混合物が十分に微分可能で可逆な関数によって与えられる場合、多くの一般的なプロセスのモデル(座標の順序と単調スケーリングまで)に対して可能であることを示す。
論文 参考訳(メタデータ) (2021-02-04T20:28:44Z) - Bayesian differential programming for robust systems identification
under uncertainty [14.169588600819546]
本稿では,非線形力学系のノイズ,スパース,不規則な観測からベイズ系を同定する機械学習フレームワークを提案する。
提案手法は、微分可能プログラミングの最近の発展を利用して、通常の微分方程式解法を用いて勾配情報を伝播する。
スパーシティプロモーティングプリエントを用いることで、下層の潜在力学に対する解釈可能かつ同義的な表現の発見が可能になる。
論文 参考訳(メタデータ) (2020-04-15T00:51:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。