論文の概要: Bayesian differential programming for robust systems identification
under uncertainty
- arxiv url: http://arxiv.org/abs/2004.06843v2
- Date: Sat, 18 Apr 2020 23:04:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 02:45:13.956127
- Title: Bayesian differential programming for robust systems identification
under uncertainty
- Title(参考訳): 不確実性下における頑健なシステム同定のためのベイズ微分計画法
- Authors: Yibo Yang, Mohamed Aziz Bhouri, Paris Perdikaris
- Abstract要約: 本稿では,非線形力学系のノイズ,スパース,不規則な観測からベイズ系を同定する機械学習フレームワークを提案する。
提案手法は、微分可能プログラミングの最近の発展を利用して、通常の微分方程式解法を用いて勾配情報を伝播する。
スパーシティプロモーティングプリエントを用いることで、下層の潜在力学に対する解釈可能かつ同義的な表現の発見が可能になる。
- 参考スコア(独自算出の注目度): 14.169588600819546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a machine learning framework for Bayesian systems
identification from noisy, sparse and irregular observations of nonlinear
dynamical systems. The proposed method takes advantage of recent developments
in differentiable programming to propagate gradient information through
ordinary differential equation solvers and perform Bayesian inference with
respect to unknown model parameters using Hamiltonian Monte Carlo. This allows
us to efficiently infer posterior distributions over plausible models with
quantified uncertainty, while the use of sparsity-promoting priors enables the
discovery of interpretable and parsimonious representations for the underlying
latent dynamics. A series of numerical studies is presented to demonstrate the
effectiveness of the proposed methods including nonlinear oscillators,
predator-prey systems, chaotic dynamics and systems biology. Taken all
together, our findings put forth a novel, flexible and robust workflow for
data-driven model discovery under uncertainty.
- Abstract(参考訳): 本稿では,非線形力学系のノイズ,スパース,不規則な観測からベイズ系を同定する機械学習フレームワークを提案する。
提案手法は、微分可能プログラミングの最近の発展を利用して、通常の微分方程式解法を用いて勾配情報を伝播し、ハミルトンモンテカルロを用いた未知のモデルパラメータに関するベイズ推定を行う。
これにより、不確実性が定量化されうるモデル上での後方分布を効率的に推定することができ、一方、スパーシティ・プロモーティング・プリエントを用いることで、基礎となる潜在力学に対する解釈可能かつ調和的な表現の発見が可能になる。
非線形発振器, 捕食者-餌系, カオス力学, システム生物学など, 提案手法の有効性を示す数値実験を行った。
総合すると、不確実性の下でデータ駆動モデル発見のための新しい、柔軟で堅牢なワークフローが生まれました。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid
Neural Modeling [4.76185521514135]
本稿では,ハイブリッドニューラル微分可能モデルにおける有効かつ効率的な不確実性伝播と推定のための新しい手法DiffHybrid-UQを提案する。
具体的には,データノイズとてんかんの不確かさから生じるアレタリック不確かさと,モデル形状の相違やデータ空間のばらつきから生じるエピステマティック不確かさの両方を効果的に識別し,定量化する。
論文 参考訳(メタデータ) (2023-12-30T07:40:47Z) - Gaussian process learning of nonlinear dynamics [0.0]
モデルパラメータのキャラクタリゼーションのベイズ推定により非線形力学を学習する手法を提案する。
本稿では,提案手法の適用性について,力学系におけるいくつかの典型的なシナリオについて論じる。
論文 参考訳(メタデータ) (2023-12-19T14:27:26Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics
with Quantified Uncertainty [8.815974147041048]
本研究では,非線形(時空間)力学の擬似的支配方程式を,定量化された不確実性を伴うスパースノイズデータから同定する枠組みを開発した。
提案アルゴリズムは、正準常微分方程式と偏微分方程式によって制御される複数の非線形力学系に対して評価される。
論文 参考訳(メタデータ) (2022-10-14T20:37:36Z) - Bayesian Identification of Nonseparable Hamiltonian Systems Using
Stochastic Dynamic Models [0.13764085113103217]
本稿では,システム同定(ID)の確率的定式化と非分離ハミルトニアン系の推定を提案する。
非分離ハミルトニアン系は、天体物理学、ロボット工学、渦力学、荷電粒子力学、量子力学などの様々な科学・工学応用のモデルに現れる。
論文 参考訳(メタデータ) (2022-09-15T23:11:11Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Gaussian processes meet NeuralODEs: A Bayesian framework for learning
the dynamics of partially observed systems from scarce and noisy data [0.0]
本稿では,非線形力学系の部分的,雑音的,不規則な観測からベイズ系を同定する機械学習フレームワーク(GP-NODE)を提案する。
提案手法は、微分可能プログラミングの最近の発展を利用して、通常の微分方程式解法を用いて勾配情報を伝播する。
捕食者予備システム,システム生物学,50次元ヒューマンモーションダイナミクスシステムを含む提案GP-NODE法の有効性を示すために,一連の数値的研究を行った。
論文 参考訳(メタデータ) (2021-03-04T23:42:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。