論文の概要: Learning Latent Space Dynamics with Model-Form Uncertainties: A Stochastic Reduced-Order Modeling Approach
- arxiv url: http://arxiv.org/abs/2409.00220v2
- Date: Thu, 7 Nov 2024 16:09:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 19:50:01.821652
- Title: Learning Latent Space Dynamics with Model-Form Uncertainties: A Stochastic Reduced-Order Modeling Approach
- Title(参考訳): モデル形不確かさを用いた潜在空間ダイナミクスの学習:確率的低次モデリング手法
- Authors: Jin Yi Yong, Rudy Geelen, Johann Guilleminot,
- Abstract要約: 本稿では,複素系の低次モデリングにおけるモデル形式不確かさの表現と定量化のための確率論的アプローチを提案する。
提案手法は,プロジェクション行列のランダム化により近似空間を拡張することにより,これらの不確実性を捉える。
提案手法の有効性は, 推算演算子に対するモデル形状の不確実性の影響を同定し, 定量化することにより, 流体力学における正準問題に対して評価される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a probabilistic approach to represent and quantify model-form uncertainties in the reduced-order modeling of complex systems using operator inference techniques. Such uncertainties can arise in the selection of an appropriate state-space representation, in the projection step that underlies many reduced-order modeling methods, or as a byproduct of considerations made during training, to name a few. Following previous works in the literature, the proposed method captures these uncertainties by expanding the approximation space through the randomization of the projection matrix. This is achieved by combining Riemannian projection and retraction operators - acting on a subset of the Stiefel manifold - with an information-theoretic formulation. The efficacy of the approach is assessed on canonical problems in fluid mechanics by identifying and quantifying the impact of model-form uncertainties on the inferred operators.
- Abstract(参考訳): 本稿では,演算子推論手法を用いた複素系の低次モデリングにおけるモデル形式不確かさの表現と定量化のための確率論的アプローチを提案する。
このような不確実性は、適切な状態空間表現の選択、多くの低次モデリング手法の基礎となるプロジェクションステップ、あるいは訓練中に行われた考慮の副産物として生じる。
文献における先行研究に続いて、提案手法は、プロジェクション行列のランダム化により近似空間を拡張することにより、これらの不確実性を捉える。
これは、リーマン射影作用素と、スティーフェル多様体の部分集合上で作用するリトラクション作用素と、情報理論の定式化を組み合わせることで達成される。
提案手法の有効性は, 推算演算子に対するモデル形状の不確実性の影響を同定し, 定量化することにより, 流体力学における正準問題に対して評価される。
関連論文リスト
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Dimensionality reduction can be used as a surrogate model for
high-dimensional forward uncertainty quantification [3.218294891039672]
本研究では,不確実性定量化における次元減少の結果から代理モデルを構築する手法を提案する。
提案手法は次元減少の逐次的応用とは異なる。
提案手法は,高次元入力の不確かさを特徴とする2つの不確実性定量化問題によって実証される。
論文 参考訳(メタデータ) (2024-02-07T04:47:19Z) - Non-intrusive surrogate modelling using sparse random features with
applications in crashworthiness analysis [4.521832548328702]
Sparse Random Features を自己教師付き次元減少と組み合わせた代理モデリングに利用する新しい手法について述べる。
以上の結果から, サーロゲートモデリング技術, ポリノミアルカオス展開, ニューラルネットワークの状況に対するアプローチの優位性が示唆された。
論文 参考訳(メタデータ) (2022-12-30T01:29:21Z) - Multielement polynomial chaos Kriging-based metamodelling for Bayesian
inference of non-smooth systems [0.0]
本稿では,高非線形工学モデルのベイズパラメータ推定のための領域分割に基づく代理モデリング手法を提案する。
開発されたサロゲートモデルは、入力空間の非重複の有限集合上に構築された局所ポリノミアルカオスに基づくクリギングメタモデルの配列を断片的に関数として結合する。
提案手法の有効性と精度は,解析的ベンチマークと数値的ケーススタディを含む2つのケーススタディを通じて検証される。
論文 参考訳(メタデータ) (2022-12-05T13:22:39Z) - The Past Does Matter: Correlation of Subsequent States in Trajectory
Predictions of Gaussian Process Models [0.7734726150561089]
モデルの出力と軌道分布の近似を考察する。
本研究では,不確実性伝播に関するこれまでの研究は,予測された軌道のその後の状態の間に独立性の仮定を誤って含んでいたことを示す。
論文 参考訳(メタデータ) (2022-11-20T22:19:39Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
我々は、できるだけ多くの軌道最適化パイプラインをモデリング問題に折り畳むことがどう見えるか検討する。
我々の技術的アプローチの核心は、軌道を反復的にデノベーションすることで計画する拡散確率モデルにある。
論文 参考訳(メタデータ) (2022-05-20T07:02:03Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
動的モード分解は、動的データを研究するための非常に効率的な手法であることが証明された。
このアプローチの適用は、利用可能なデータが不完全である場合に問題となる。
本稿では,森-Zwanzig分解の1次近似を考察し,対応する最適化問題を記述し,勾配に基づく最適化法を用いて解く。
論文 参考訳(メタデータ) (2022-02-23T11:23:59Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z) - Bayesian differential programming for robust systems identification
under uncertainty [14.169588600819546]
本稿では,非線形力学系のノイズ,スパース,不規則な観測からベイズ系を同定する機械学習フレームワークを提案する。
提案手法は、微分可能プログラミングの最近の発展を利用して、通常の微分方程式解法を用いて勾配情報を伝播する。
スパーシティプロモーティングプリエントを用いることで、下層の潜在力学に対する解釈可能かつ同義的な表現の発見が可能になる。
論文 参考訳(メタデータ) (2020-04-15T00:51:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。