論文の概要: An approach to the Gaussian RBF kernels via Fock spaces
- arxiv url: http://arxiv.org/abs/2210.14167v1
- Date: Tue, 25 Oct 2022 16:59:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 15:52:34.170671
- Title: An approach to the Gaussian RBF kernels via Fock spaces
- Title(参考訳): フォック空間によるガウス型RBFカーネルへのアプローチ
- Authors: Daniel Alpay, Fabrizio Colombo, Kamal Diki, Irene Sabadini
- Abstract要約: フォック空間とセガル・バルグマン理論の手法を用いてガウス RBF カーネル上でのいくつかの結果を証明する。
RBFカーネルは、量子力学や時間周波数解析において最もよく用いられる演算子とどのように関連付けられるかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We use methods from the Fock space and Segal-Bargmann theories to prove
several results on the Gaussian RBF kernel in complex analysis. The latter is
one of the most used kernels in modern machine learning kernel methods, and in
support vector machines (SVMs) classification algorithms. Complex analysis
techniques allow us to consider several notions linked to the RBF kernels like
the feature space and the feature map, using the so-called Segal-Bargmann
transform. We show also how the RBF kernels can be related to some of the most
used operators in quantum mechanics and time frequency analysis, specifically,
we prove the connections of such kernels with creation, annihilation, Fourier,
translation, modulation and Weyl operators. For the Weyl operators, we also
study a semigroup property in this case.
- Abstract(参考訳): fock空間とsegal-bargmann理論の手法を用いて、複素解析におけるガウス rbf 核のいくつかの結果を証明する。
後者は、現代の機械学習カーネルメソッドで最も使われているカーネルの1つであり、ベクトルマシン(SVM)分類アルゴリズムをサポートする。
複素解析手法により、いわゆるSegal-Bargmann変換を用いて、特徴空間や特徴写像のようなRBFカーネルに関連するいくつかの概念を考えることができる。
また、RBFカーネルは量子力学や時間周波数解析において最もよく用いられる演算子とどのように関係するかを示し、特に、生成、消滅、フーリエ、翻訳、変調、ワイル演算子との接続を証明した。
ワイル作用素に対しては、この場合、半群の性質も研究する。
関連論文リスト
- Variance-Reducing Couplings for Random Features: Perspectives from Optimal Transport [57.73648780299374]
ランダム機能(RF)は、機械学習におけるカーネルメソッドをスケールアップするための一般的なテクニックであり、正確なカーネル評価をモンテカルロ推定に置き換える。
我々は、理論的洞察と数値アルゴリズムを用いて最適な輸送の統一的な枠組みを用いて、ユークリッドおよび離散入力空間上で定義されたカーネルに対して、新しい高性能なRF結合を開発する。
パラダイムとしての分散還元の利点と限界について、驚くほどの結論に達した。
論文 参考訳(メタデータ) (2024-05-26T12:25:09Z) - Fast Evaluation of Additive Kernels: Feature Arrangement, Fourier Methods, and Kernel Derivatives [0.5735035463793009]
厳密な誤り解析を伴う非等間隔高速フーリエ変換(NFFT)に基づく手法を提案する。
また,本手法は,カーネルの分化に伴う行列の近似に適していることを示す。
複数のデータセット上で高速な行列ベクトル積を持つ付加的カーネルスキームの性能について述べる。
論文 参考訳(メタデータ) (2024-04-26T11:50:16Z) - An appointment with Reproducing Kernel Hilbert Space generated by
Generalized Gaussian RBF as $L^2-$measure [3.9931474959554496]
Generalized Gaussian Radial Basis Function (RBF) Kernelsは、人工知能と機械学習ルーチンにおいて最も多く採用されているカーネルである。
この原稿は、前述の機械学習ルーチンに対する一般化ガウスRBFのカーネルセンスへの応用と、上記の関数との比較を実証している。
論文 参考訳(メタデータ) (2023-12-17T12:02:10Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
トポロジカルデータ分析(TDA)は、複雑なデータから意味のある洞察を抽出する強力なツールとして登場した。
本稿では,ベッチ曲線の次数増加に基づくBettiカーネルの量子的定義法を提案する。
論文 参考訳(メタデータ) (2023-07-14T14:48:52Z) - Kernelized Cumulants: Beyond Kernel Mean Embeddings [11.448622437140022]
我々は、テンソル代数のツールを用いて、累積をカーネルヒルベルト空間(RKHS)に拡張する。
我々は、次数1を超えることはいくつかの利点があり、同じ計算複雑性と最小限のオーバーヘッドで達成できると主張している。
論文 参考訳(メタデータ) (2023-01-29T15:31:06Z) - Learning "best" kernels from data in Gaussian process regression. With
application to aerodynamics [0.4588028371034406]
本稿では,ガウス過程の回帰/クリギングサロゲートモデリング手法におけるカーネルの選択/設計アルゴリズムを紹介する。
アルゴリズムの最初のクラスはカーネルフローであり、機械学習の分類の文脈で導入された。
アルゴリズムの第2のクラスはスペクトル核リッジ回帰と呼ばれ、近似される関数のノルムが最小となるような「最良の」カーネルを選択することを目的としている。
論文 参考訳(メタデータ) (2022-06-03T07:50:54Z) - Revisiting Memory Efficient Kernel Approximation: An Indefinite Learning
Perspective [0.8594140167290097]
マトリックス近似は、大規模機械学習アプローチにおいて重要な要素である。
我々はMEKAをシフト不変カーネルだけでなく、非定常カーネルにも適用できるように拡張する。
我々は、安定な正の半定値MEKA近似を開発するために、スペクトルシフトのランツォスに基づく推定を提案する。
論文 参考訳(メタデータ) (2021-12-18T10:01:34Z) - Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge
Equivariant Projected Kernels [108.60991563944351]
本稿では、ベクトル値のガウス過程を幾何学に忠実に誘導するゲージ同変カーネルの構築法を提案する。
我々は,変分推論などの標準ガウスプロセストレーニング手法を,この設定に拡張する。
論文 参考訳(メタデータ) (2021-10-27T13:31:10Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Mat\'ern Gaussian processes on Riemannian manifolds [81.15349473870816]
ガウス過程の広く用いられるマタン類を一般化する方法を示す。
また、Mat'ern から広く用いられる2乗指数過程への一般化も拡張する。
論文 参考訳(メタデータ) (2020-06-17T21:05:42Z) - Exact representations of many body interactions with RBM neural networks [77.34726150561087]
我々は、RBMの表現力を利用して、多体接触相互作用を1体演算子に正確に分解する。
この構成は、ハバードモデルでよく知られたヒルシュの変換を、核物理学におけるピオンレスFTのようなより複雑な理論に一般化する。
論文 参考訳(メタデータ) (2020-05-07T15:59:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。