論文の概要: Mean-field neural networks: learning mappings on Wasserstein space
- arxiv url: http://arxiv.org/abs/2210.15179v3
- Date: Mon, 18 Sep 2023 07:34:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 01:21:51.885772
- Title: Mean-field neural networks: learning mappings on Wasserstein space
- Title(参考訳): 平均場ニューラルネットワーク:wasserstein空間上の学習マッピング
- Authors: Huy\^en Pham and Xavier Warin
- Abstract要約: 確率測度のワッサーシュタイン空間と関数の空間を対応づけたモデルに対する機械学習タスクについて検討する。
ニューラルネットワークの2つのクラスは、いわゆる平均場関数を学習するために提案される。
本稿では,時間依存型平均場問題の解法として,平均場ニューラルネットワークを用いたアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the machine learning task for models with operators mapping between
the Wasserstein space of probability measures and a space of functions, like
e.g. in mean-field games/control problems. Two classes of neural networks,
based on bin density and on cylindrical approximation, are proposed to learn
these so-called mean-field functions, and are theoretically supported by
universal approximation theorems. We perform several numerical experiments for
training these two mean-field neural networks, and show their accuracy and
efficiency in the generalization error with various test distributions.
Finally, we present different algorithms relying on mean-field neural networks
for solving time-dependent mean-field problems, and illustrate our results with
numerical tests for the example of a semi-linear partial differential equation
in the Wasserstein space of probability measures.
- Abstract(参考訳): 確率測度のワッサーシュタイン空間と,平均場ゲームや制御問題などの関数空間を対応づけたモデルに対する機械学習タスクについて検討する。
これらの平均場関数を学習するために,ビン密度と円筒近似に基づく2種類のニューラルネットワークが提案され,理論上は普遍近似定理によって支持されている。
これら2つの平均場ニューラルネットワークを訓練するための数値実験を行い、様々なテスト分布を持つ一般化誤差の精度と効率を示す。
最後に,時間依存平均場問題を解決するために平均場ニューラルネットワークに依存する異なるアルゴリズムを示し,確率測度のワッサースタイン空間における半線形偏微分方程式の例として数値実験を行った。
関連論文リスト
- Quantile and moment neural networks for learning functionals of
distributions [0.0]
確率空間における分布関数の近似関数について,ニューズニューラルネットワークについて検討する。
量子化とモーメント近似に基づくニューラルネットワークの2つのクラスを提案し,これらの関数を学習した。
論文 参考訳(メタデータ) (2023-03-20T12:23:31Z) - Proof of the Theory-to-Practice Gap in Deep Learning via Sampling
Complexity bounds for Neural Network Approximation Spaces [5.863264019032882]
関数の近似化や積分に基づく(決定的あるいはランダム化)アルゴリズムの計算複雑性について検討する。
この分野における最も重要な問題の1つは、理論的に証明可能なニューラルネットワーク近似率を実現できるかどうかという問題である。
論文 参考訳(メタデータ) (2021-04-06T18:55:20Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z) - Multi-fidelity Bayesian Neural Networks: Algorithms and Applications [0.0]
本稿では,可変忠実度の雑音データを用いて訓練できるベイズ型ニューラルネットワーク(BNN)を提案する。
関数近似の学習や、偏微分方程式(PDE)に基づく逆問題の解法に応用する。
論文 参考訳(メタデータ) (2020-12-19T02:03:53Z) - Neural Network Approximations of Compositional Functions With
Applications to Dynamical Systems [3.660098145214465]
我々は,合成関数とそのニューラルネットワーク近似の近似理論を開発した。
構成関数の重要な特徴の集合と,ニューラルネットワークの特徴と複雑性の関係を同定する。
関数近似に加えて、ニューラルネットワークの誤差上限の式もいくつか証明する。
論文 参考訳(メタデータ) (2020-12-03T04:40:25Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Neural Operator: Graph Kernel Network for Partial Differential Equations [57.90284928158383]
この作業はニューラルネットワークを一般化し、無限次元空間(演算子)間の写像を学習できるようにすることである。
非線形活性化関数と積分作用素のクラスを構成することにより、無限次元写像の近似を定式化する。
実験により,提案したグラフカーネルネットワークには所望の特性があり,最先端技術と比較した場合の競合性能を示すことが確認された。
論文 参考訳(メタデータ) (2020-03-07T01:56:20Z) - Mean-Field and Kinetic Descriptions of Neural Differential Equations [0.0]
この研究では、ニューラルネットワークの特定のクラス、すなわち残留ニューラルネットワークに焦点を当てる。
我々は、ネットワークのパラメータ、すなわち重みとバイアスに関する定常状態と感度を分析する。
残留ニューラルネットワークにインスパイアされた微視的ダイナミクスの修正は、ネットワークのフォッカー・プランクの定式化につながる。
論文 参考訳(メタデータ) (2020-01-07T13:41:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。