論文の概要: QNet: A Quantum-native Sequence Encoder Architecture
- arxiv url: http://arxiv.org/abs/2210.17262v2
- Date: Mon, 28 Aug 2023 01:17:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 01:22:56.524363
- Title: QNet: A Quantum-native Sequence Encoder Architecture
- Title(参考訳): QNet: 量子ネイティブシーケンスエンコーダアーキテクチャ
- Authors: Wei Day, Hao-Sheng Chen, Min-Te Sun
- Abstract要約: この研究は、量子コンピュータ上で最小の量子ビットを用いて完全に推論する新しいシーケンスエンコーダモデルQNetを提案する。
さらに,残差接続によってリンクされた数個のQNetブロックからなる量子古典ハイブリッドモデルResQNetを紹介する。
- 参考スコア(独自算出の注目度): 2.8099769011264586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work proposes QNet, a novel sequence encoder model that entirely
inferences on the quantum computer using a minimum number of qubits. Let $n$
and $d$ represent the length of the sequence and the embedding size,
respectively. The dot-product attention mechanism requires a time complexity of
$O(n^2 \cdot d)$, while QNet has merely $O(n+d)$ quantum circuit depth. In
addition, we introduce ResQNet, a quantum-classical hybrid model composed of
several QNet blocks linked by residual connections, as an isomorph Transformer
Encoder. We evaluated our work on various natural language processing tasks,
including text classification, rating score prediction, and named entity
recognition. Our models exhibit compelling performance over classical
state-of-the-art models with a thousand times fewer parameters. In summary,
this work investigates the advantage of machine learning on near-term quantum
computers in sequential data by experimenting with natural language processing
tasks.
- Abstract(参考訳): この研究は、量子コンピュータ上で最小の量子ビットを用いて完全に推論する新しいシーケンスエンコーダモデルQNetを提案する。
n$ と $d$ はそれぞれシーケンスの長さと埋め込みサイズを表す。
ドット生成注意機構は、時間複雑性が$o(n^2 \cdot d)$であるのに対して、qnetは$o(n+d)$の量子回路深さしか持たない。
さらに,残差接続で連結された複数のqnetブロックからなる量子古典ハイブリッドモデルであるresqnetをisomorph transformerエンコーダとして導入する。
我々は、テキスト分類、評価スコア予測、名前付きエンティティ認識など、自然言語処理タスクに関する作業について評価した。
我々のモデルは、1000倍のパラメータを持つ古典的最先端モデルよりも魅力的な性能を示す。
本研究は、自然言語処理タスクを実験することにより、逐次データにおける短期量子コンピュータにおける機械学習の利点を考察する。
関連論文リスト
- Quantum Algorithms for Compositional Text Processing [1.3654846342364308]
本稿では、最近提案された自然言語用DisCoCircフレームワークに注目し、量子適応QDisCoCircを提案する。
これはAI解釈可能なレンダリングに対する構成的アプローチによって動機付けられている。
テキスト類似性のモデルネイティブな原始演算に対しては、フォールトトレラントな量子コンピュータのための量子アルゴリズムを導出する。
論文 参考訳(メタデータ) (2024-08-12T11:21:40Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Multi-Scale Feature Fusion Quantum Depthwise Convolutional Neural Networks for Text Classification [3.0079490585515343]
量子畳み込みに基づく新しい量子ニューラルネットワーク(QNN)モデルを提案する。
我々は、パラメータの数を著しく減らし、計算複雑性を下げる量子深度畳み込みを開発する。
また,単語レベルの特徴と文レベルの特徴を統合することで,モデル性能を向上させるマルチスケール機能融合機構を導入する。
論文 参考訳(メタデータ) (2024-05-22T10:19:34Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
量子コンピュータは、古典的コンピュータが決して起こらない重要な問題を効率的に解決することを約束する。
完全に自動化された量子ソフトウェアスタックを開発する必要がある。
この研究は、今日のツールの"内部"の外観を提供し、量子回路のシミュレーション、コンパイル、検証などにおいてこれらの手段がどのように利用されるかを示す。
論文 参考訳(メタデータ) (2023-01-10T19:00:00Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Quantum Neuron with Separable-State Encoding [0.0]
現在利用可能な量子プロセッサにおいて、高度な量子ニューロンモデルを大規模にテストすることは、まだ不可能である。
マルチキュービットゲート数を削減した量子パーセプトロン(QP)モデルを提案する。
シミュレーション量子コンピュータにおいて,QPの量子ビットバージョンをいくつか実装することにより,提案モデルの性能を実証する。
論文 参考訳(メタデータ) (2022-02-16T19:26:23Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - A Quantum Convolutional Neural Network on NISQ Devices [0.9831489366502298]
本稿では,畳み込みニューラルネットワークに着想を得た量子畳み込みニューラルネットワークを提案する。
我々のモデルは、画像認識タスクの特定のノイズに対して堅牢である。
これは、ビッグデータ時代の情報を処理するために、量子パワーを活用する可能性を開く。
論文 参考訳(メタデータ) (2021-04-14T15:07:03Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
特徴抽出のための量子回路エンコーダからなる量子畳み込みニューラルネットワーク(QCNN)を構築した。
入力音声はまず、Mel-spectrogramを抽出するために量子コンピューティングサーバにアップストリームされる。
対応する畳み込み特徴は、ランダムパラメータを持つ量子回路アルゴリズムを用いて符号化される。
符号化された機能は、最終認識のためにローカルRNNモデルにダウンストリームされる。
論文 参考訳(メタデータ) (2020-10-26T03:36:01Z) - Supervised Learning Using a Dressed Quantum Network with "Super
Compressed Encoding": Algorithm and Quantum-Hardware-Based Implementation [7.599675376503671]
ノイズのある中間量子(NISQ)デバイス上での変分量子機械学習(QML)アルゴリズムの実装には、必要となるキュービット数とマルチキュービットゲートに関連するノイズに関連する問題がある。
本稿では,これらの問題に対処するための量子ネットワークを用いた変分QMLアルゴリズムを提案する。
他の多くのQMLアルゴリズムとは異なり、我々の量子回路は単一量子ビットゲートのみで構成されており、ノイズに対して堅牢である。
論文 参考訳(メタデータ) (2020-07-20T16:29:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。