Evaluation of Parameterized Quantum Circuits with Cross-Resonance
Pulse-Driven Entanglers
- URL: http://arxiv.org/abs/2211.00350v3
- Date: Thu, 22 Dec 2022 10:51:44 GMT
- Title: Evaluation of Parameterized Quantum Circuits with Cross-Resonance
Pulse-Driven Entanglers
- Authors: Mohannad Ibrahim, Hamed Mohammadbagherpoor, Cynthia Rios, Nicholas T.
Bronn, Gregory T. Byrd
- Abstract summary: Variational Quantum Algorithms (VQAs) have emerged as a powerful class of algorithms that is highly suitable for noisy quantum devices.
Previous works have shown that choosing an effective parameterized quantum circuit (PQC) or ansatz for VQAs is crucial to their overall performance.
In this paper, we utilize pulse-level access to quantum machines and our understanding of their two-qubit interactions to optimize the design of two-qubit entanglers.
- Score: 0.27998963147546146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational Quantum Algorithms (VQAs) have emerged as a powerful class of
algorithms that is highly suitable for noisy quantum devices. Therefore,
investigating their design has become key in quantum computing research.
Previous works have shown that choosing an effective parameterized quantum
circuit (PQC) or ansatz for VQAs is crucial to their overall performance,
especially on near-term devices. In this paper, we utilize pulse-level access
to quantum machines and our understanding of their two-qubit interactions to
optimize the design of two-qubit entanglers in a manner suitable for VQAs. Our
analysis results show that pulse-optimized ansatze reduce state preparation
times by more than half, maintain expressibility relative to standard PQCs, and
are more trainable through local cost function analysis. Our algorithm
performance results show that in three cases, our PQC configuration outperforms
the base implementation. Our algorithm performance results, executed on IBM
Quantum hardware, demonstrate that our pulse-optimized PQC configurations are
more capable of solving MaxCut and Chemistry problems compared to a standard
configuration.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
Current intermediate-scale quantum (NISQ) devices remain limited in their capabilities.
We propose the use of parameterized Networks (TNs) to attempt an improved performance of the Variational Quantum Eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2024-02-19T12:53:52Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Variational Quantum Pulse Learning [28.040754288931897]
We propose variational quantum pulses (VQP), a novel paradigm to directly train quantum pulses for learning tasks.
VQP manipulates variational quantum pulses by pulling and pushing the amplitudes of pulses in an optimization framework.
Our framework to train pulses maintains the robustness to noise on Noisy Intermediate-Scale Quantum (NISQ) computers.
arXiv Detail & Related papers (2022-03-31T17:58:13Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - Benchmarking quantum co-processors in an application-centric,
hardware-agnostic and scalable way [0.0]
We introduce a new benchmark, dubbed Atos Q-score (TM)
The Q-score measures the maximum number of qubits that can be used effectively to solve the MaxCut optimization problem.
We provide an open-source implementation of Q-score that makes it easy to compute the Q-score of any quantum hardware.
arXiv Detail & Related papers (2021-02-25T16:26:23Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Classical Optimizers for Noisy Intermediate-Scale Quantum Devices [1.43494686131174]
We present a collection of tunings tuned for usage on Noisy Intermediate-Scale Quantum (NISQ) devices.
We analyze the efficiency and effectiveness of different minimizes in a VQE case study.
While most results to date concentrated on tuning the quantum VQE circuit, we show that, in the presence of quantum noise, the classical minimizer step needs to be carefully chosen to obtain correct results.
arXiv Detail & Related papers (2020-04-06T21:31:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.