Violation of Detailed Balance in Quantum Open Systems
- URL: http://arxiv.org/abs/2211.03070v3
- Date: Sun, 30 Jul 2023 09:00:02 GMT
- Title: Violation of Detailed Balance in Quantum Open Systems
- Authors: Robert Alicki, Milan \v{S}indelka and David Gelbwaser-Klimovsky
- Abstract summary: We consider the dynamics of a quantum system immersed in a dilute gas at thermodynamics equilibrium.
It is shown that the Gibbs state at the bath temperature is always stationary while the detailed balance condition at this state can be violated beyond the Born approximation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the dynamics of a quantum system immersed in a dilute gas at
thermodynamics equilibrium using a quantum Markovian master equation derived by
applying the low-density limit technique. It is shown that the Gibbs state at
the bath temperature is always stationary while the detailed balance condition
at this state can be violated beyond the Born approximation. This violation is
generically related to the absence of time-reversal symmetry for the scattering
T-matrix, which produces a thermalization mechanism that allows the presence of
persistent probability and heat currents at thermal equilibrium. This
phenomenon is illustrated by a model of an electron hopping between three
quantum dots in an external magnetic field.
Related papers
- Statistical Virtual Temperature of Classical and Quantum Systems [3.6400809555225115]
We introduce a foundational definition of statistical virtual temperature, derived from the spectrum of the Gibbs Kubo-Martin-Schwinger (KMS) state.
We demonstrate that the universal physical bounds between von Neumann entropy and statistical virtual temperature are constrained by these IPs.
arXiv Detail & Related papers (2024-10-02T07:14:37Z) - Quantum thermalization of translation-invariant systems at high temperature [0.0]
Quantum thermalization describes how closed quantum systems can effectively reach thermal equilibrium.
Despite its ubiquity and conceptual significance, a complete proof of quantum thermalization has remained elusive for several decades.
We prove that quantum thermalization must occur in any qubit system with local interactions satisfying three conditions.
arXiv Detail & Related papers (2024-09-11T18:00:01Z) - Emergent pair localization in a many-body quantum spin system [0.0]
Generically, non-integrable quantum systems are expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis.
In the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to thermalize on experimentally accessible timescales.
We study an ensemble of Heisenberg spins with a tunable distribution of random coupling strengths realized by a Rydberg quantum simulator.
arXiv Detail & Related papers (2022-07-28T16:31:18Z) - Quantum thermodynamics of periodically driven polaritonic systems [0.0]
We investigate the energy distribution and quantum thermodynamics in periodically driven polaritonic systems at room temperature.
We compute the thermodynamic performance during harmonic modulation and demonstrate that maximum efficiency occurs at resonance.
arXiv Detail & Related papers (2022-07-03T04:32:11Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Subdiffusive dynamics and critical quantum correlations in a
disorder-free localized Kitaev honeycomb model out of equilibrium [0.0]
Disorder-free localization has recently emerged as a mechanism for ergodicity breaking in homogeneous lattice gauge theories.
In this work we show that this mechanism can lead to unconventional states of quantum matter as the absence of thermalization lifts constraints imposed by equilibrium statistical physics.
arXiv Detail & Related papers (2020-12-10T15:39:17Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.