論文の概要: Rotation-equivariant Graph Neural Networks for Learning Glassy Liquids
Representations
- arxiv url: http://arxiv.org/abs/2211.03226v2
- Date: Sun, 13 Aug 2023 19:58:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-15 23:09:03.290504
- Title: Rotation-equivariant Graph Neural Networks for Learning Glassy Liquids
Representations
- Title(参考訳): ガラス状液体表現学習のための回転同値グラフニューラルネットワーク
- Authors: Francesco Saverio Pezzicoli, Guillaume Charpiat, Fran\c{c}ois P.
Landes
- Abstract要約: ガラスの静的構造の堅牢な表現を学習するグラフニューラルネットワーク(GNN)を構築する。
この制約は予測力を著しく向上するだけでなく、目に見えない温度に一般化する能力も向上することを示す。
- 参考スコア(独自算出の注目度): 0.5735035463793008
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Within the glassy liquids community, the use of Machine Learning (ML) to
model particles' static structure is currently a hot topic. The state of the
art consists in Graph Neural Networks (GNNs), which have a great expressive
power but are heavy models with numerous parameters and lack interpretability.
Inspired by recent advances in the field of Machine Learning group-equivariant
representations, we build a GNN that learns a robust representation of the
glass' static structure by constraining it to preserve the roto-translation
(SE(3)) equivariance. We show that this constraint not only significantly
improves the predictive power but also improves the ability to generalize to
unseen temperatures while allowing to reduce the number of parameters.
Furthermore, interpretability is improved, as we can relate the action of our
basic convolution layer to well-known rotation-invariant expert features.
Through transfer-learning experiments we demonstrate that our network learns a
robust representation, which allows us to push forward the idea of a learned
glass structural order parameter.
- Abstract(参考訳): glassy liquidsコミュニティでは、粒子の静的構造をモデル化する機械学習(ml)が、現在ホットなトピックとなっている。
state of the artはグラフニューラルネットワーク(gnns)で構成されており、非常に表現力があるが、多くのパラメータと解釈能力の欠如した重いモデルである。
機械学習群同変表現の分野での最近の進歩に触発されて、ガラスの静的構造の堅牢な表現を、ロト翻訳(SE(3))同値を保つために制約することで学習するGNNを構築した。
この制約は予測能力を大幅に向上するだけでなく、パラメータの数を減らしながら未確認温度に一般化する能力も向上することを示す。
さらに, 基本畳み込み層の作用をよく知られた回転不変な専門家特徴に関連付けることにより, 解釈性が向上した。
移動学習実験により、我々のネットワークは堅牢な表現を学習し、学習されたガラス構造秩序パラメータのアイデアを前進させることができることを示した。
関連論文リスト
- Learning Invariant Representations of Graph Neural Networks via Cluster
Generalization [58.68231635082891]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングでますます人気が高まっている。
本稿では,構造変化が発生した場合,GNNの性能が著しく低下することが実験的に確認された。
本稿では,GNNの不変表現を学習するクラスタ情報伝達(CIT)機構を提案する。
論文 参考訳(メタデータ) (2024-03-06T10:36:56Z) - Super Consistency of Neural Network Landscapes and Learning Rate Transfer [72.54450821671624]
我々は、失われたヘッセンのレンズを通して風景を研究する。
我々は、$mu$P のスペクトル特性がネットワークの大きさに大きく依存していることを発見した。
ニューラルタンジェントカーネル(NTK)や他のスケーリングシステムでは、シャープネスは異なるスケールで非常に異なるダイナミクスを示す。
論文 参考訳(メタデータ) (2024-02-27T12:28:01Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Characterizing Learning Dynamics of Deep Neural Networks via Complex
Networks [1.0869257688521987]
複素ネットワーク理論(CNT)は、ディープニューラルネットワーク(DNN)を重み付きグラフとして表現し、それらを動的システムとして研究する。
ノード/ニューロンとレイヤ、すなわちNodes StrengthとLayers Fluctuationのメトリクスを紹介します。
本フレームワークは,学習力学のトレンドを抽出し,高精度ネットワークから低次ネットワークを分離する。
論文 参考訳(メタデータ) (2021-10-06T10:03:32Z) - Parameterized Hypercomplex Graph Neural Networks for Graph
Classification [1.1852406625172216]
我々は超複雑特徴変換の特性を利用するグラフニューラルネットワークを開発した。
特に、提案したモデルのクラスでは、代数自身を特定する乗法則は、トレーニング中にデータから推測される。
提案するハイパーコンプレックスgnnをいくつかのオープングラフベンチマークデータセット上でテストし,そのモデルが最先端の性能に達することを示す。
論文 参考訳(メタデータ) (2021-03-30T18:01:06Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - E(n) Equivariant Graph Neural Networks [86.75170631724548]
本稿では,E(n)-Equivariant Graph Neural Networks (EGNNs) と呼ばれる回転,翻訳,反射,置換に等価なグラフニューラルネットワークを学習する新しいモデルを提案する。
既存の手法とは対照的に、私たちの仕事は計算的に高価な中間層における高階表現を必要としません。
論文 参考訳(メタデータ) (2021-02-19T10:25:33Z) - The Self-Simplifying Machine: Exploiting the Structure of Piecewise
Linear Neural Networks to Create Interpretable Models [0.0]
本稿では,分類タスクに対するPiecewise Linear Neural Networksの単純化と解釈性向上のための新しい手法を提案する。
我々の手法には、トレーニングを伴わずに、訓練された深層ネットワークを使用して、良好なパフォーマンスと単一隠れ層ネットワークを生成する方法が含まれる。
これらの手法を用いて,モデル性能の予備的研究およびウェルズ・ファーゴのホームレンディングデータセットのケーススタディを行う。
論文 参考訳(メタデータ) (2020-12-02T16:02:14Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
現代の深層畳み込みネットワーク(CNN)は、分散シフトの下で一般化しないとしてしばしば批判される。
現代画像分類CNNにおける分布外と転送性能の相互作用を初めて検討した。
トレーニングセットとモデルサイズを増大させることで、分散シフトロバスト性が著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-16T18:39:04Z) - Deep learning of contagion dynamics on complex networks [0.0]
本稿では,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングに基づく補完的アプローチを提案する。
任意のネットワーク構造をシミュレーションすることで,学習したダイナミックスの性質を学習データを超えて探索することが可能になる。
この結果は,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングが新たな補完的な視点を提供することを示す。
論文 参考訳(メタデータ) (2020-06-09T17:18:34Z) - A deep learning framework for solution and discovery in solid mechanics [1.4699455652461721]
本稿では,物理情報ニューラルネットワーク(PINN)と呼ばれるディープラーニングのクラスを,固体力学の学習と発見に応用する。
本稿では, 運動量バランスと弾性の関係をPINNに組み込む方法について解説し, 線形弾性への応用について詳細に検討する。
論文 参考訳(メタデータ) (2020-02-14T08:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。