A Note on Task-Aware Loss via Reweighing Prediction Loss by
Decision-Regret
- URL: http://arxiv.org/abs/2211.05116v1
- Date: Wed, 9 Nov 2022 18:59:35 GMT
- Title: A Note on Task-Aware Loss via Reweighing Prediction Loss by
Decision-Regret
- Authors: Connor Lawless and Angela Zhou
- Abstract summary: We propose a decision-aware version of predict-then-optimize.
We reweigh the prediction error by the decision regret incurred by an (unweighted) pilot estimator of costs.
We show that this approach can lead to improvements over a "predict-then-optimize" framework.
- Score: 11.57423546614283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this short technical note we propose a baseline for decision-aware
learning for contextual linear optimization, which solves stochastic linear
optimization when cost coefficients can be predicted based on context
information. We propose a decision-aware version of predict-then-optimize. We
reweigh the prediction error by the decision regret incurred by an (unweighted)
pilot estimator of costs to obtain a decision-aware predictor, then optimize
with cost predictions from the decision-aware predictor. This method can be
motivated as a finite-difference, iterate-independent approximation of the
gradients of previously proposed end-to-end learning algorithms; it is also
consistent with previously suggested intuition for end-to-end learning. This
baseline is computationally easy to implement with readily available reweighted
prediction oracles and linear optimization, and can be implemented with convex
optimization so long as the prediction error minimization is convex.
Empirically, we demonstrate that this approach can lead to improvements over a
"predict-then-optimize" framework for settings with misspecified models, and is
competitive with other end-to-end approaches. Therefore, due to its simplicity
and ease of use, we suggest it as a simple baseline for end-to-end and
decision-aware learning.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Decision-focused predictions via pessimistic bilevel optimization: a computational study [0.7499722271664147]
Uncertainty in optimization parameters is an important and longstanding challenge.
We build predictive models that measure a emphregret measure on decisions taken with them.
We show various computational techniques to achieve tractability.
arXiv Detail & Related papers (2023-12-29T15:05:00Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - Regret Bounds and Experimental Design for Estimate-then-Optimize [9.340611077939828]
In practical applications, data is used to make decisions in two steps: estimation and optimization.
Errors in the estimation step can lead estimate-then-optimize to sub-optimal decisions.
We provide a novel bound on this regret for smooth and unconstrained optimization problems.
arXiv Detail & Related papers (2022-10-27T16:13:48Z) - Off-Policy Evaluation with Policy-Dependent Optimization Response [90.28758112893054]
We develop a new framework for off-policy evaluation with a textitpolicy-dependent linear optimization response.
We construct unbiased estimators for the policy-dependent estimand by a perturbation method.
We provide a general algorithm for optimizing causal interventions.
arXiv Detail & Related papers (2022-02-25T20:25:37Z) - Data-Driven Combinatorial Optimization with Incomplete Information: a
Distributionally Robust Optimization Approach [0.0]
We analyze linear optimization problems where the cost vector is not known a priori, but is only observable through a finite data set.
The goal is to find a procedure that transforms the data set into an estimate of the expected value of the objective function.
arXiv Detail & Related papers (2021-05-28T23:17:35Z) - Integrated Optimization of Predictive and Prescriptive Tasks [0.0]
We propose a new framework directly integrating predictive tasks under prescriptive tasks.
We train the parameters of predictive algorithm within a prescription problem via bilevel optimization techniques.
arXiv Detail & Related papers (2021-01-02T02:43:10Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
The predict+optimize problem combines machine learning ofproblem coefficients with a optimization prob-lem that uses the predicted coefficients.
We show how to directlyexpress the loss of the optimization problem in terms of thepredicted coefficients as a piece-wise linear function.
We propose a novel divide and algorithm to tackle optimization problems without this restriction and predict itscoefficients using the optimization loss.
arXiv Detail & Related papers (2020-12-04T00:26:56Z) - Fast Rates for Contextual Linear Optimization [52.39202699484225]
We show that a naive plug-in approach achieves regret convergence rates that are significantly faster than methods that directly optimize downstream decision performance.
Our results are overall positive for practice: predictive models are easy and fast to train using existing tools, simple to interpret, and, as we show, lead to decisions that perform very well.
arXiv Detail & Related papers (2020-11-05T18:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.