論文の概要: A mixed-categorical correlation kernel for Gaussian process
- arxiv url: http://arxiv.org/abs/2211.08262v2
- Date: Sat, 6 May 2023 16:17:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-09 23:56:54.001008
- Title: A mixed-categorical correlation kernel for Gaussian process
- Title(参考訳): ガウス過程における混合カテゴリー相関核
- Authors: P. Saves and Y. Diouane and N. Bartoli and T. Lefebvre and J. Morlier
- Abstract要約: 本稿では, 連続指数関数型カーネルを拡張し, 混合カテゴリー変数の処理を行うカーネルベースアプローチを提案する。
提案したカーネルは、連続緩和とゴーワー距離に基づくGPモデルの両方を一般化する新しいGPサロゲートを導く。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, there has been a growing interest for mixed-categorical meta-models
based on Gaussian process (GP) surrogates. In this setting, several existing
approaches use different strategies either by using continuous kernels (e.g.,
continuous relaxation and Gower distance based GP) or by using a direct
estimation of the correlation matrix. In this paper, we present a kernel-based
approach that extends continuous exponential kernels to handle
mixed-categorical variables. The proposed kernel leads to a new GP surrogate
that generalizes both the continuous relaxation and the Gower distance based GP
models. We demonstrate, on both analytical and engineering problems, that our
proposed GP model gives a higher likelihood and a smaller residual error than
the other kernel-based state-of-the-art models. Our method is available in the
open-source software SMT.
- Abstract(参考訳): 近年,ガウス過程(gp)サロゲートに基づく混合分類メタモデルへの関心が高まっている。
この設定では、いくつかの既存のアプローチは、連続カーネル(例えば、連続緩和とガウワー距離に基づくGP)または相関行列の直接推定によって異なる戦略を使用する。
本稿では,連続指数型カーネルを拡張し,混合カテゴリ変数を扱うカーネルベースアプローチを提案する。
提案したカーネルは、連続緩和とゴーワー距離に基づくGPモデルの両方を一般化する新しいGPサロゲートを導く。
解析的および工学的問題の両方において、提案したGPモデルは、他のカーネルベースの最先端モデルよりも高い確率と残差誤差を与えることを示した。
本手法はオープンソースソフトウェアsmtで利用可能である。
関連論文リスト
- Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Linear Time GPs for Inferring Latent Trajectories from Neural Spike
Trains [7.936841911281107]
我々は,Hida-Mat'ernカーネルと共役変分推論(CVI)を利用した潜在GPモデルの一般的な推論フレームワークであるcvHMを提案する。
我々は任意の確率で線形時間複雑性を持つ潜在神経軌道の変分推定を行うことができる。
論文 参考訳(メタデータ) (2023-06-01T16:31:36Z) - Shallow and Deep Nonparametric Convolutions for Gaussian Processes [0.0]
GPの非パラメトリックプロセス畳み込み定式化を導入し,機能サンプリング手法を用いて弱点を緩和する。
古典的ディープGPモデルの代替となるこれらの非パラメトリック畳み込みの合成を提案する。
論文 参考訳(メタデータ) (2022-06-17T19:03:04Z) - Riemannian Score-Based Generative Modeling [56.20669989459281]
経験的性能を示すスコアベース生成モデル(SGM)を紹介する。
現在のSGMは、そのデータが平坦な幾何学を持つユークリッド多様体上で支えられているという前提を定めている。
これにより、ロボット工学、地球科学、タンパク質モデリングの応用にこれらのモデルを使用することができない。
論文 参考訳(メタデータ) (2022-02-06T11:57:39Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
本稿では,EGPメタラーナーがGP学習者のインクリメンタルアンサンブル(IE-) GPフレームワークを提案し,それぞれが所定のカーネル辞書に属するユニークなカーネルを持つ。
各GP専門家は、ランダムな特徴ベースの近似を利用してオンライン予測とモデル更新を行い、そのスケーラビリティを生かし、EGPメタラーナーはデータ適応重みを生かし、熟練者ごとの予測を合成する。
新たなIE-GPは、EGPメタラーナーおよび各GP学習者内における構造化力学をモデル化することにより、時間変化関数に対応するように一般化される。
論文 参考訳(メタデータ) (2021-10-13T15:11:25Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
approach [0.76146285961466]
ガウス過程(GP)は、機械学習や統計学において強力なモデルを構築するために頻繁に用いられる。
本稿では,2重推定器による確率と大規模データセットの正確な推測と計算的ゲインを提供する擬似マージナル(PM)方式を提案する。
論文 参考訳(メタデータ) (2021-03-04T20:48:29Z) - Graph Based Gaussian Processes on Restricted Domains [13.416168979487118]
非パラメトリック回帰では、入力はユークリッド空間の制限された部分集合に落ちるのが一般的である。
入力領域の幾何学を尊重する共分散を学習するグラフラプラシアン型GP(GL-GP)の新たなクラスを提案する。
本稿では,GL-GP手法の理論的サポートを提供し,各種アプリケーションの性能向上を示す。
論文 参考訳(メタデータ) (2020-10-14T17:01:29Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。